import numpy as np
import matplotlib.pyplot as plt
X = np.array([[6],[8],[10],[14],[18]])
y = np.array([7,9,13,17.5,18])
plt.title("pizza diameter vs price")
plt.xlabel('diameter')
plt.ylabel('price')
plt.plot(X,y,'r.') # r表示颜色红
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X,y)
test_pizza = np.array([[12]])
pred_price = model.predict(test_pizza)
pred_price
# array([13.68103448])
print("误差平方和:%.2f" % np.mean((model.predict(X)-y)**2))
误差平方和:1.75
# 方差
x_bar = X.mean() # 11.2
variance = ((X-x_bar)**2).sum()/(len(X)-1)
variance # 23.2
np.var(X, ddof=1) # np内置的方差,ddof为校正选项
###################
ddof : int, optional
"Delta Degrees of Freedom": the divisor used in the calculation is
``N - ddof``, where ``N`` represents the number of elements. By
default `ddof` is zero.
# 协方差,两个变量之间的相关性
y_bar = y.mean()
covariance = np.multiply((X-x_bar).transpose(), y-y_bar).sum()/(len(X)-1)
covariance # 22.65
np.cov(X.transpose(), y)
array([[23.2 , 22.65],
[22.65, 24.3 ]])
假设模型为 y = a + b x y = a+bx y=a+bx
b = c o v ( x , y ) v a r ( x ) = 22.65 / 23.2 = 0.98 b = \frac{cov(x,y)}{var(x)} = 22.65/23.2 = 0.98 b=var(x)cov(x,y)=22.65/23.2=0.98
a = y ˉ − b x ˉ = 12.9 − 0.98 ∗ 11.2 = 1.92 a = \bar y - b \bar x = 12.9-0.98*11.2=1.92 a=yˉ−bxˉ=12.9−0.98∗11.2=1.92
模型为 y = 1.92 + 0.98 x y = 1.92+0.98x y=1.92+0.98x
R 2 = 1 − ∑ ( y i − f ( x i ) ) 2 ∑ ( y i − y ˉ ) 2 R^2 = 1-\frac{\sum(y_i-f(x_i))^2}{\sum(y_i-\bar y)^2} R2=1−∑(yi−yˉ)2∑(yi−f(xi))2
X_test = np.array([8,9,11,16,12]).reshape(-1,1)
y_test = [11,8.5,15,18,11]
r_squared = model.score(X_test, y_test)
r_squared # 0.6620052929422553