卷积网络创建,卷积层后是池化层,第三层卷积层后添加了压平层Flatten,三个全连接层
model = models.Sequential()
# 第1层卷积,卷积核大小为3*3,32个,28*28为待训练图片的大小
model.add(layers.Conv2D(
32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
# 第2层卷积,卷积核大小为3*3,64个
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 第3层卷积,卷积核大小为3*3,64个
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten()) #
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
数据加载
# mnist数据集存储的位置,如何不存在将自动下载
if True:
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
else:
train_images = load_train_images() #自定义加载函数
train_labels = load_train_labels()
test_images = load_test_images()
test_labels = load_test_labels()
数据维度转化,增加了通道维度
# 6万张训练图片,1万张测试图片
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))
归一化
# 像素值映射到 0 - 1 之间
train_images, test_images = train_images / 255.0, test_images / 255.0
编译模型
self.cnn.model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
模型保存参数
check_path = './ckpt/cp-{epoch:04d}.ckpt'
# period 每隔5epoch保存一次 ,回调函数将在每个epoch后保存模型到check_path
save_model_cb = tf.keras.callbacks.ModelCheckpoint( #(model.save_weights(filepath)
check_path, save_weights_only=True, verbose=1, period=1)
拟合模型
model.fit(self.data.train_images, self.data.train_labels,epochs=5, callbacks=[save_model_cb])
测试准确度
test_loss, test_acc = self.cnn.model.evaluate(self.data.test_images, self.data.test_labels)
print("准确率: %.4f,共测试了%d张图片 " % (test_acc, len(self.data.test_labels)))
预测图片预处理,两种方式加载图片
# 以黑白方式读取图片
if False:
img = Image.open(image_path).convert('L')
flatten_img = np.reshape(img, (28, 28, 1))
x = np.array([1 - flatten_img])
print(x.shape) #(1, 28, 28, 1)
else:
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
rows, cols = img.shape[0:2]
for i in range(rows): # 反转一下黑白
for j in range(rows):
img[i][j] = 255 - img[i][j]
# print(i,j)
x = np.reshape(img,(1,28,28,1))
#endif
预测
y = self.cnn.model.predict(x)
# 因为x只传入了一张图片,取y[0]即可
# np.argmax()取得最大值的下标,即代表的数字
print(image_path)
print(y[0])
print('-> Predict digit', np.argmax(y[0]))
预测结果
完整代码:
import os
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import sys
import decodeidx
from decodeidx import load_train_images,load_train_labels,load_test_images,load_test_labels
'''
python 3.7
tensorflow 2.0.0b0
'''
import matplotlib.pyplot as plt
import cv2
import numpy as np
from PIL import Image
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
class CNN():
def __init__(self):
model = models.Sequential()
# 第1层卷积,卷积核大小为3*3,32个,28*28为待训练图片的大小
model.add(layers.Conv2D(
32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
# 第2层卷积,卷积核大小为3*3,64个
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 第3层卷积,卷积核大小为3*3,64个
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten()) #
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.summary()
self.model = model
class DataSource(object):
def __init__(self):
# mnist数据集存储的位置,如何不存在将自动下载
if True:
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
else:
train_images = load_train_images()
train_labels = load_train_labels()
test_images = load_test_images()
test_labels = load_test_labels()
# 6万张训练图片,1万张测试图片
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))
# 像素值映射到 0 - 1 之间
train_images, test_images = train_images / 255.0, test_images / 255.0
self.train_images, self.train_labels = train_images, train_labels
self.test_images, self.test_labels = test_images, test_labels
class Train:
def __init__(self):
self.cnn = CNN()
self.data = DataSource()
def train(self):
check_path = './ckpt/cp-{epoch:04d}.ckpt'
# period 每隔5epoch保存一次 ,回调函数将在每个epoch后保存模型到check_path
save_model_cb = tf.keras.callbacks.ModelCheckpoint( #(model.save_weights(filepath)
check_path, save_weights_only=True, verbose=1, period=1)
self.cnn.model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
print(self.data.train_images.shape)
self.cnn.model.fit(self.data.train_images, self.data.train_labels,epochs=5, callbacks=[save_model_cb])
test_loss, test_acc = self.cnn.model.evaluate(self.data.test_images, self.data.test_labels)
print("准确率: %.4f,共测试了%d张图片 " % (test_acc, len(self.data.test_labels)))
class Predict(object):
def __init__(self):
latest = tf.train.latest_checkpoint('./ckpt')
self.cnn = CNN()
# 恢复网络权重
self.cnn.model.load_weights(latest)
def predict(self, image_path):
# 以黑白方式读取图片
if False:
img = Image.open(image_path).convert('L')
flatten_img = np.reshape(img, (28, 28, 1))
x = np.array([1 - flatten_img])
print(x.shape) #(1, 28, 28, 1)
else:
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
rows, cols = img.shape[0:2]
for i in range(rows): # 反转一下黑白
for j in range(rows):
img[i][j] = 255 - img[i][j]
# print(i,j)
x = np.reshape(img,(1,28,28,1))
#endif
y = self.cnn.model.predict(x)
# 因为x只传入了一张图片,取y[0]即可
# np.argmax()取得最大值的下标,即代表的数字
print(image_path)
print(y[0])
print('-> Predict digit', np.argmax(y[0]))
Flags =False
if __name__ == "__main__":
if Flags==True:
app = Train()
app.train()
elif Flags==False:
app = Predict()
app.predict('./bmp_mnist/5.jpg')
else:
print("exit\n")
CNN方式准确度很高,下篇给出解码mnist数据代码