- FlagEmbedding
吉小雨
python库python
FlagEmbedding教程FlagEmbedding是一个用于生成文本嵌入(textembeddings)的库,适合处理自然语言处理(NLP)中的各种任务。嵌入(embeddings)是将文本表示为连续向量,能够捕捉语义上的相似性,常用于文本分类、聚类、信息检索等场景。官方文档链接:FlagEmbedding官方GitHub一、FlagEmbedding库概述1.1什么是FlagEmbeddi
- 欺诈文本分类检测(十四):GPTQ量化模型
沉下心来学鲁班
微调分类人工智能语言模型微调
1.引言量化的本质:通过将模型参数从高精度(例如32位)降低到低精度(例如8位),来缩小模型体积。本文将采用一种训练后量化方法GPTQ,对前文已经训练并合并过的模型文件进行量化,通过比较模型量化前后的评测指标,来测试量化对模型性能的影响。GPTQ的核心思想在于:将所有权重压缩到8位或4位量化中,通过最小化与原始权重的均方误差来实现。在推理过程中,它将动态地将权重解量化为float16,以提高性能,
- 【自然语言处理】自然语言处理NLP概述及应用
@我们的天空
人工智能技术nlp人工智能深度学习python机器学习自然语言处理scikit-learn
自然语言处理(NaturalLanguageProcessing,简称NLP)是一门集计算机科学、人工智能以及语言学于一体的交叉学科,致力于让计算机能够理解、解析、生成和处理人类的自然语言。它是人工智能领域的一个关键分支,旨在缩小人与机器之间的交流障碍,使得机器能够更有效地识别并响应人类的自然语言指令或内容。自然语言处理NLP概述基本任务:文本分类:将文本划分为预定义的类别,如情感分析、主题分类等
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- NLP-预训练模型-中文:封神榜系列【姜子牙(通用大模型)、太乙(多模态)、二郎神(语言理解)、闻仲(语言生成)、燃灯(语言转换)、余元(领域)、...】
u013250861
LLM自然语言处理人工智能深度学习
封神榜模型系列简介系列名称需求适用任务参数规模备注姜子牙通用通用大模型>70亿参数通用大模型“姜子牙”系列,具备翻译,编程,文本分类,信息抽取,摘要,文案生成,常识问答和数学计算等能力太乙特定多模态8千万-10亿参数应用于跨模态场景,包括文本图像生成,蛋白质结构预测,语音-文本表示等
- 自然语言处理系列五十一》文本分类算法》Python快速文本分类器FastText
陈敬雷-充电了么-CEO兼CTO
算法人工智能大数据自然语言处理分类pythonchatgpt人工智能ai机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理FastText和Word2vec的区别FastText代码实战总结自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理自然语言处理(N
- 自然语言处理系列五十》文本分类算法》SVM支持向量机算法原理
陈敬雷-充电了么-CEO兼CTO
算法大数据人工智能算法自然语言处理分类nlpai人工智能chatgpt
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十SVM支持向量机》算法原理SVM支持向量机》代码实战总结自然语言处理系列五十SVM支持向量机》算法原理SVM支持向量机在文本分类的应用场景中,相比其他机器学习算法有更好的效果。下面介绍其原理,并用SparkMLlib机器
- Hugging Face教程
小牛笔记
自然语言处理人工智能自然语言处理
HuggingFace教程1.引言在当今数字化时代,自然语言处理(NLP)在各个领域中扮演着重要角色。从文本分类、情感分析到机器翻译和对话系统,NLP技术的应用日益广泛。在NLP领域,HuggingFace是一个备受欢迎的开源工具库,提供了丰富的预训练模型和强大的工具,帮助开发者快速构建和部署NLP应用。2.HuggingFace简介HuggingFace是一个专注于NLP的开源组织,致力于提供易
- RNN及其变体
豫儿啊~
lstm人工智能rnn
RNN及其变体RNN模型定义循环神经网络:一般接受的一序列进行输入,输出也是一个序列作用和应用场景:RNN擅长处理连续语言文本,机器翻译,文本生成,文本分类,摘要生成RNN模型的分类根据输入与输出结构NVsN:输入和输出等长,应用场景:对联生成;词性标注;NERNVs1:输入N,输出为单值,应用场景:文本分类1VsN:输出是一个,输出为N,应用场景:图片文本生成NVsM:输入和输出不等长,应用场景
- 文字模型训练分析评论(算法实战)
富士达幸运星
算法人工智能机器学习
文字模型训练,尤其是在自然语言处理(NLP)领域,是构建能够理解、解释、生成人类语言系统的核心步骤。这类模型广泛应用于文本分类、情感分析、机器翻译、聊天机器人、摘要生成等多个方面。针对文字模型训练后的分析评论,可以从以下几个方面进行:1.性能评估准确率/错误率:评估模型在测试集上的准确率或错误率是最直接的方式,这能反映模型的基本性能。混淆矩阵:对于分类任务,混淆矩阵可以详细展示模型在各个类别上的表
- 快速使用transformers的pipeline实现各种深度学习任务
E寻数据
huggingface计算机视觉nlp深度学习人工智能pythonpipelinetransformers
目录引言安装情感分析文本生成文本摘要图片分类实例分割目标检测音频分类自动语音识别视觉问答文档问题回答图文描述引言在这篇中文博客中,我们将深入探讨使用transformers库中的pipeline()函数,它为预训练模型提供了一个简单且快速的推理方法。pipeline()函数支持多种任务,包括文本分类、文本生成、摘要生成、图像分类、图像分割、对象检测、音频分类、自动语音识别、视觉问题回答、文档问题回
- AIGC自动行为采集的文本分类任务——结和上下文情景自动编码(含数据清洗以及提示词和代码)——批量处理
东方-教育技术博主
学术学习相关分类数据挖掘人工智能
文章目录数据清洗二次清洗数据上下文情景顺序应该先处算情境批量操作excel数据清洗遍历python脚本所在目录所有excel文件读取所有文件的‘’标注‘’列,遍历读取这一列每行数据,删除所有数据中不包含:1学生回答问题2出声思考3学生举手/提问/建议4学生获得成就时刻5学生与家长互动6家长辅导学生7家长鼓励学生8家长批评/惩罚学生这八条中的数据,如果遇到学生回答问题R1,或者学生回答问题R2学生回
- 【机器学习】机器学习与大模型在人工智能领域的融合应用与性能优化新探索
E绵绵
Everything人工智能机器学习大模型pythonAIGC应用科技
文章目录引言机器学习与大模型的基本概念机器学习概述监督学习无监督学习强化学习大模型概述GPT-3BERTResNetTransformer机器学习与大模型的融合应用自然语言处理文本生成文本分类机器翻译图像识别自动驾驶医学影像分析语音识别智能助手语音转文字大模型性能优化的新探索模型压缩权重剪枝量化知识蒸馏分布式训练数据并行模型并行异步训练高效推理模型裁剪缓存机制专用硬件未来展望跨领域应用智能化系统人
- 欺诈文本分类微调(六):Lora单卡训练
沉下心来学鲁班
微调分类人工智能机器学习语言模型微调
1.引言前面欺诈文本分类微调(四):构造训练/测试数据集已经构造出了数据集,更之前的欺诈文本分类微调(一):基座模型选型选好了基座模型,这篇文章将基于构造出的数据集和选定的模型进行欺诈文本分类的微调训练。关于微调方法,我们将使用比较普遍的Lora:在模型中注入低秩矩阵的方式。关于训练器,使用transformers库中提供的Trainer类。2.数据准备2.1加载数据导入要使用的基础包。impor
- 【ShuQiHere】“从 One-Hot 到 GPT:窥探词表示技术的演变”
ShuQiHere
gpt神经网络机器学习人工智能
【ShuQiHere】在自然语言处理(NLP)领域,如何让机器理解人类语言一直是一个核心问题。而词表示(WordRepresentation)正是解决这个问题的基础技术。通过词表示,我们可以将文本中的词语转化为计算机能够理解和处理的数字向量,这为各种NLP任务,如文本分类、情感分析、机器翻译等,提供了强大的支持。从最早的One-Hot编码,到如今广泛应用的上下文相关词嵌入技术,词表示技术已经走过了
- 自然语言处理(NLP)技术的概念及优势
刘小董
学习心得自然语言处理
自然语言处理(NLP)是人工智能领域的一个重要分支,其目标是使计算机能够理解、处理和生成人类自然语言的形式和含义。NLP技术的优势包括:实现人机交互:NLP技术可以使计算机与人类之间实现自然的语言交互,使人们可以通过语音识别、语义理解等方式与计算机进行交流。大规模文本处理:NLP技术可以对大规模文本进行自动化处理和分析,提取关键信息和知识,从而实现文本分类、情感分析、信息检索等任务。自动化翻译:N
- 《倒排索引》
刚满十八工地搬砖
数据结构
1、了解倒排索引的基本概念1.1、倒排索引是什么倒排索引是一种用于全文搜索的数据结构,它将文档中的每个单词映射到包含该单词的所有文档的列表中,然后用该列表替换单词。因此,倒排索引在文本搜索和信息检索中广泛应用,如搜索引擎、网站搜索、文本分类等场景中。具体来说,一个倒排索引包含一个词语词典和每个词语对应的倒排列表。倒排列表中记录了包含该词语的所有文档的编号、词频等信息。这让我们能够在O(1)的时间内
- NLP技术
小天才dhsb
网络其他
自然语言处理(NLP)技术可以应用在多个领域,例如机器翻译、情感分析、文本分类等。以下是几个例子:1.机器翻译:NLP技术可以将一种语言的文本自动翻译成另一种语言。例如,谷歌翻译就是应用了NLP技术,它可以将英语的文本翻译成其他语言,如法语、西班牙语等。2.情感分析:NLP技术可以分析文本中的情感倾向。例如,通过分析社交媒体上用户的评论和推文,可以判断用户对某个产品或事件的情感态度是正面的、负面的
- 大语言模型可信性浅谈
MarkHD
语言模型人工智能自然语言处理
大语言模型可信性的研究摘要:随着人工智能技术的快速发展,大语言模型在自然语言处理领域的应用越来越广泛。然而,大语言模型的可信性一直是人们关注的焦点。本文将从多个维度探讨大语言模型的可信性问题,包括模型性能、数据质量、隐私保护等方面,并提出相应的解决方案。一、引言大语言模型是指能够处理大规模文本数据的深度学习模型,如BERT、GPT等。这些模型在自然语言处理任务中取得了显著的成果,包括文本分类、情感
- 基于ERNIR3.0文本分类的开发实践
wangqiaowq
人工智能
参考:基于ERNIR3.0文本分类:(KUAKE-QIC)意图识别多分类(单标签)-飞桨AIStudio星河社区(baidu.com)https://zhuanlan.zhihu.com/p/574666812?utm_id=0遇到的问题:如下采用paddleNLP下文本分类实例进行分类训练后发现生成的模型分类不准。打算自己开发脚本进行分类计算再进行服务化部署。基于ERNIR3.0文本分类任务模型
- 【探索AI】四:AI(人工智能)自然语言处理(NLP)
美少女战士1@
学习笔记AI人工智能自然语言处理
自然语言处理(NLP)的概念自然语言处理(NaturalLanguageProcessing,NLP)是一门交叉学科,涉及人工智能、计算机科学和语言学等领域,旨在让计算机能够理解、分析、生成和处理人类语言。NLP技术致力于使计算机能够与人类以自然语言进行交流,从而实现更加智能、便捷的人机交互。在自然语言处理中,常见的任务包括但不限于:文本分类:将文本按照预定义的类别进行分类,如垃圾邮件分类、新闻分
- 文本分类算法能够应用于哪些领域?真实项目场景介绍
思通数科x
分类数据挖掘人工智能多分类
我们有幸参与了多个涉及分类算法的项目,这些项目覆盖了多个行业,展示了分类算法的广泛应用和巨大潜力。下面我为大家介绍几个实际的真实项目案例:1.某城市档案馆我们为一线某城市的档案馆开发了一个智能分类系统。这个系统能够自动识别和分类158种不同类型的公文,极大地提高了档案管理的效率。通过机器学习算法,我们训练了一个模型,它能够理解公文的内容和格式,从而实现快速且准确的分类。这不仅减少了人工分类的时间,
- 朴素贝叶斯算法
YuanDaima2048
机器学习算法学习算法机器学习人工智能深度学习pythonsklearn
朴素贝叶斯算法一、基本概念二、算法及代码应用朴素贝叶斯NB算法分类算法区别其他机器学习算法:机器学习实战工具安装和使用一、基本概念朴素贝叶斯(NB)是一种基于贝叶斯定理与特征条件独立假设的分类算法。它被广泛应用于文本分类、垃圾邮件过滤等领域。朴素贝叶斯算法简单易懂,其核心思想是假设在给定目标值时,各个属性之间相互独立。在实际应用中,朴素贝叶斯算法在垃圾邮件过滤中表现出色。它不仅准确率高,而且速度快
- 21丨朴素贝叶斯分类(下):如何对文档进行分类?
张九日zx
朴素贝叶斯分类最适合的场景就是文本分类、情感分析和垃圾邮件识别。sklearn机器学习包sklearn的全称叫Scikit-learn,它给我们提供了3个朴素贝叶斯分类算法,分别是高斯朴素贝叶斯(GaussianNB)、多项式朴素贝叶斯(MultinomialNB)和伯努利朴素贝叶斯(BernoulliNB)。自然界的现象比较适合用高斯朴素贝叶斯来处理,而文本分类是使用多项式朴素贝叶斯或者伯努利朴
- Task6 基于深度学习的文本分类3
listentorain_W
基于深度学习的文本分类学习目标了解Transformer的原理和基于预训练语言模型(Bert)的词表示学会Bert的使用,具体包括pretrain和finetune文本表示方法Part4Transformer原理Transformer是在"AttentionisAllYouNeed"中提出的,模型的编码部分是一组编码器的堆叠(论文中依次堆叠六个编码器),模型的解码部分是由相同数量的解码器的堆叠。i
- 8、python多项式贝叶斯文本分类(完整)
UP Lee
数据挖掘实战多项式贝叶斯文章分类
1、贝叶斯定理(BayesTheorem)朴素贝叶斯分类(NaiveBayesClassifier)贝叶斯分类算法,是统计学的一种分类方法,它是利用贝叶斯定理的概率统计知识,对离散型的数据进行分类的算法2、贝叶斯算法的类型sklearn包naive_bayes模块GaussianNB高斯贝叶斯BernoulliNB伯努利贝叶斯MultionmialNB多项式贝叶斯(需要知道具体每个特征的数值大小)
- zero shot classification提取主题词
狗庄欺人太甚
NLP机器学习python算法
基于NLI的零镜头文本分类。zeroshotclassification提出了一种使用预训练的NLI模型作为现成的零样本序列分类器的方法。该方法的工作原理是将要分类的序列设置为NLI前提,并从每个候选标签构建一个假设。例如,如果我们想评估一个序列是否属于“政治”类,我们可以构建一个“本文是关于政治”的假设。然后将蕴涵和矛盾的概率转换为标签概率。这种方法在许多情况下都非常有效,尤其是与BART和Ro
- Task5 基于深度学习的文本分类2
listentorain_W
Task5基于深度学习的文本分类2在上一章节,我们通过FastText快速实现了基于深度学习的文本分类模型,但是这个模型并不是最优的。在本章我们将继续深入。基于深度学习的文本分类本章将继续学习基于深度学习的文本分类。学习目标学习Word2Vec的使用和基础原理学习使用TextCNN、TextRNN进行文本表示学习使用HAN网络结构完成文本分类文本表示方法Part3词向量本节通过word2vec学习
- 使用word2vec+tensorflow自然语言处理NLP
取名真难.
机器学习自然语言处理word2vectensorflow机器学习深度学习神经网络
目录介绍:搭建上下文或预测目标词来学习词向量建模1:建模2:预测:介绍:Word2Vec是一种用于将文本转换为向量表示的技术。它是由谷歌团队于2013年提出的一种神经网络模型。Word2Vec可以将单词表示为高维空间中的向量,使得具有相似含义的单词在向量空间中距离较近。这种向量表示可以用于各种自然语言处理任务,如语义相似度计算、文本分类和命名实体识别等。Word2Vec的核心思想是通过预测上下文或
- ERNIE实现酒店情感分析(文本分类)
OverlordDuke
深度学习NLP分类数据挖掘人工智能NLP
ERNIE实现酒店情感分析(文本分类)引言在自然语言处理(NLP)领域,文本分类是一项重要的任务,它能够帮助我们理解和分析大量的文本数据。随着深度学习技术的发展,预训练模型成为了处理文本分类任务的重要工具。本项目将介绍如何利用PaddleHub和预训练模型ERNIE来完成酒店情感分析,即对酒店评论进行积极或消极的分类。项目背景与意义在过去,NLP文本处理主要依赖于序列模型,如循环神经网络(RNN)
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http