第一章:第一节数据载入及初步观察-课程

通过第一节的简单学习,我发现基于pandas使用绝对路径读文件时,路径之间的间隔可以用 \ 也可以用正斜杠,而且在路径前加个字母r,会很有用。

1 第一章:数据载入及初步观察

1.1 载入数据

数据集下载 https://www.kaggle.com/c/titanic/overview

1.1.1 任务一:导入numpy和pandas

#写入代码
import pandas as pd
import numpy as np

【提示】如果加载失败,学会如何在你的python环境下安装numpy和pandas这两个库

1.1.2 任务二:载入数据

(1) 使用相对路径载入数据
(2) 使用绝对路径载入数据

#写入代码
#相对路径
df = pd.read_csv('train.csv')
df.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
#写入代码
da = pd.read_csv(r"E:\base_jupyter\Code\Jupyter\hands-on-data-analysis-master\unit_one\train.csv")
da.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

【提示】相对路径载入报错时,尝试使用os.getcwd()查看当前工作目录。
【思考】知道数据加载的方法后,试试pd.read_csv()和pd.read_table()的不同,如果想让他们效果一样,需要怎么做?了解一下’.tsv’和’.csv’的不同,如何加载这两个数据集?
【总结】加载的数据是所有工作的第一步,我们的工作会接触到不同的数据格式(eg:.csv;.tsv;.xlsx),但是加载的方法和思路都是一样的,在以后工作和做项目的过程中,遇到之前没有碰到的问题,要多多查资料吗,使用googel,了解业务逻辑,明白输入和输出是什么。

1.1.3 任务三:每1000行为一个数据模块,逐块读取

#写入代码
chunke = pd.read_csv('train.csv', chunksize=1000)

【思考】什么是逐块读取?为什么要逐块读取呢?

1.1.4 任务四:将表头改成中文,索引改为乘客ID [对于某些英文资料,我们可以通过翻译来更直观的熟悉我们的数据]

PassengerId => 乘客ID
Survived => 是否幸存
Pclass => 乘客等级(1/2/3等舱位)
Name => 乘客姓名
Sex => 性别
Age => 年龄
SibSp => 堂兄弟/妹个数
Parch => 父母与小孩个数
Ticket => 船票信息
Fare => 票价
Cabin => 客舱
Embarked => 登船港口

#写入代码
df = pd.read_csv("train.csv",names=['乘客ID','是否幸存','仓位等级','姓名','性别','年龄','兄弟姐妹个数','父母子女个数','船票信息','票价','客舱','登船港口'],
                 index_col = '乘客ID', header=0)
df.head()
是否幸存 仓位等级 姓名 性别 年龄 兄弟姐妹个数 父母子女个数 船票信息 票价 客舱 登船港口
乘客ID
1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

【思考】所谓将表头改为中文其中一个思路是:将英文额度表头替换成中文。还有其他的方法吗?

1.2 初步观察

导入数据后,你可能要对数据的整体结构和样例进行概览,比如说,数据大小、有多少列,各列都是什么格式的,是否包含null等

1.2.1 任务一:查看数据的基本信息

#写入代码
df.info()


Int64Index: 891 entries, 1 to 891
Data columns (total 11 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   是否幸存    891 non-null    int64  
 1   仓位等级    891 non-null    int64  
 2   姓名      891 non-null    object 
 3   性别      891 non-null    object 
 4   年龄      714 non-null    float64
 5   兄弟姐妹个数  891 non-null    int64  
 6   父母子女个数  891 non-null    int64  
 7   船票信息    891 non-null    object 
 8   票价      891 non-null    float64
 9   客舱      204 non-null    object 
 10  登船港口    889 non-null    object 
dtypes: float64(2), int64(4), object(5)
memory usage: 83.5+ KB

【提示】有多个函数可以这样做,你可以做一下总结

1.2.2 任务二:观察表格前10行的数据和后15行的数据

#写入代码
df.head(10)

是否幸存 仓位等级 姓名 性别 年龄 兄弟姐妹个数 父母子女个数 船票信息 票价 客舱 登船港口
乘客ID
1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
6 0 3 Moran, Mr. James male NaN 0 0 330877 8.4583 NaN Q
7 0 1 McCarthy, Mr. Timothy J male 54.0 0 0 17463 51.8625 E46 S
8 0 3 Palsson, Master. Gosta Leonard male 2.0 3 1 349909 21.0750 NaN S
9 1 3 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0 2 347742 11.1333 NaN S
10 1 2 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1 0 237736 30.0708 NaN C
#写入代码
df.tail(15)

是否幸存 仓位等级 姓名 性别 年龄 兄弟姐妹个数 父母子女个数 船票信息 票价 客舱 登船港口
乘客ID
877 0 3 Gustafsson, Mr. Alfred Ossian male 20.0 0 0 7534 9.8458 NaN S
878 0 3 Petroff, Mr. Nedelio male 19.0 0 0 349212 7.8958 NaN S
879 0 3 Laleff, Mr. Kristo male NaN 0 0 349217 7.8958 NaN S
880 1 1 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56.0 0 1 11767 83.1583 C50 C
881 1 2 Shelley, Mrs. William (Imanita Parrish Hall) female 25.0 0 1 230433 26.0000 NaN S
882 0 3 Markun, Mr. Johann male 33.0 0 0 349257 7.8958 NaN S
883 0 3 Dahlberg, Miss. Gerda Ulrika female 22.0 0 0 7552 10.5167 NaN S
884 0 2 Banfield, Mr. Frederick James male 28.0 0 0 C.A./SOTON 34068 10.5000 NaN S
885 0 3 Sutehall, Mr. Henry Jr male 25.0 0 0 SOTON/OQ 392076 7.0500 NaN S
886 0 3 Rice, Mrs. William (Margaret Norton) female 39.0 0 5 382652 29.1250 NaN Q
887 0 2 Montvila, Rev. Juozas male 27.0 0 0 211536 13.0000 NaN S
888 1 1 Graham, Miss. Margaret Edith female 19.0 0 0 112053 30.0000 B42 S
889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C. 6607 23.4500 NaN S
890 1 1 Behr, Mr. Karl Howell male 26.0 0 0 111369 30.0000 C148 C
891 0 3 Dooley, Mr. Patrick male 32.0 0 0 370376 7.7500 NaN Q

1.2.4 任务三:判断数据是否为空,为空的地方返回True,其余地方返回False

#写入代码
df.isnull().head()

是否幸存 仓位等级 姓名 性别 年龄 兄弟姐妹个数 父母子女个数 船票信息 票价 客舱 登船港口
乘客ID
1 False False False False False False False False False True False
2 False False False False False False False False False False False
3 False False False False False False False False False True False
4 False False False False False False False False False False False
5 False False False False False False False False False True False

【总结】上面的操作都是数据分析中对于数据本身的观察

【思考】对于一个数据,还可以从哪些方面来观察?找找答案,这个将对下面的数据分析有很大的帮助

1.3 保存数据

1.3.1 任务一:将你加载并做出改变的数据,在工作目录下保存为一个新文件train_chinese.csv

#写入代码
df.to_csv('train_Chinese.csv')

  1. 第二节的内容让我学到了一些关于pandas的简单处理,比如查看DataFrame数据的每列的项,查看某列的所有项、删除多余的列的方式、还有就是在表格数据中,最重要的一个功能就是要具有可筛选的能力,选出我所需要的信息,丢弃无用的信息。学到了如何筛选一些自己有特定需求的列,这些特定的需求要用什么方法去实现,都已经学会啦,
  2. 第三节首先学会了利用Pandas对示例数据进行排序,排序又分为使用行、列,分别升序降序排列,以及会利用Pandas进行算术计算,会计算两个DataFrame数据相加结果,知道如何使用Pandas describe()函数查看数据基本统计信息等

你可能感兴趣的:(python)