HADOOP实现查找QQ共同好友功能

HADOOP实现查找QQ共同好友功能

需求:
A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J
求出哪些人互相之间是好友,及他们的共同好友都是谁
比如:
A-B : C,E
A-C : D,F

map中逻辑如下:

/**
 * 入参:
 * A:B,C,D,F,E,O
 * B:A,C,E,K
 * ....
 * ....
 * A出参:
 * A-B:C,D,F,E,O
 * A-C:B,D,F,E,O
 * .....
 * B出参:
 * A-B:C,E,K
 * B-C:A,E,K
 * ...
 * 分析:
 * 1,要找到互为好友的两个人之间的好友是谁,首先找出A的好友有谁,以及除它之外还有谁
 *,2,要使互为好友的两个人在maptask中处理完成之后汇聚到reducetask,就必须使key相同,可以根据hashcode来排顺序
 */
public class QQFriendMapper extends Mapper<LongWritable,Text,Text,Text> {
    Text keyText = new Text();
    Text valueText = new Text();
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();
        String[] allFriends = line.split(":");
        String userMain = allFriends[0];
        String userOther = allFriends[1];
        System.out.println("userMain======="+userMain);
        System.out.println("userOther======="+userOther);
        String[] friends = userOther.split(",");
        List<String> friendsList = Arrays.asList(friends);
        String keyString = "";
        for (String friend : friends){
            if (userMain.hashCode()<friend.hashCode()){//排列key的顺序
                keyString = userMain +"-"+ friend +":";
            }else {
                keyString = friend +"-"+ userMain +":";
            }
            String valueString = "";
            for (String valueStr : friendsList){
                if (!valueStr.equals(friend)){
                    valueString += valueStr+",";
                }
            }
            keyText.set(keyString);
            valueText.set(valueString);
            System.out.println("keyString=========="+keyString);
            System.out.println("valueString=========="+valueString);
            context.write(keyText,valueText);
        }
    }
}

reduce中逻辑如下:

/**
 * 入参:
 *  
 * .....
 *
 * 出参:
 * A-B: C,E
 * .....
 * 分析:有的好友可能是单向好友(即迭代器中只有一组数据),需要过滤掉
 */
public class QQFriendReduce extends Reducer<Text,Text,Text,Text> {
    Text valueText = new Text();
    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
        System.out.println(key.toString());
        Iterator<Text> iterator = values.iterator();

        Text groupA = new Text();
        Text groupB = new Text();
        int i = 1;//过滤标识,互为好友的两个人,迭代器中只有两个,处理时,只处理i==3的数据
        while (iterator.hasNext()){
            if (i == 2){
                groupB.set(iterator.next());
                System.out.println("groupB====="+groupB);
            }else if (i == 1){
                groupA.set(iterator.next());
                System.out.println("groupA========"+groupA);
            }
            i++;
        }
        System.out.println(groupA);
        System.out.println(groupB);
        System.out.println("i============"+i);
        if (i == 3){
            String[] groupStrsA = groupA.toString().split(",");
            String[] groupStrsB = groupB.toString().split(",");
            String equalFriend = "";
            for (String strA : groupStrsA){
                for (String strB : groupStrsB){
                    if (strA.equals(strB)){
                        equalFriend += strA + ",";
                    }
                }
            }
            System.out.println(groupA);
            System.out.println(groupB);
            System.out.println("equalFriend========="+equalFriend);
            if (!equalFriend.equals("") && equalFriend != null){
                equalFriend = equalFriend.substring(0,equalFriend.length()-1);
            }
            valueText.set(equalFriend);
            context.write(key,valueText);
        }
    }
}

你可能感兴趣的:(HADOOP实现查找QQ共同好友功能)