- ai大模型自动化测试-TensorFlow Testing 测试模型实例
小赖同学啊
人工智能自动化测试(apppcAPI)python人工智能tensorflowpython
AI大模型自动化测试是确保模型质量、可靠性和性能的关键环节,以下将从测试流程、测试内容、测试工具及测试挑战与应对几个方面进行详细介绍:测试流程测试计划制定确定测试目标:明确要测试的AI大模型的具体功能、性能、安全性等方面的目标,例如评估模型在特定任务上的准确率、召回率等。定义测试范围:界定测试所涵盖的模型功能模块、数据类型、应用场景等,比如是否包括图像识别、自然语言处理等不同功能。规划测试资源:确
- 解读 DeepSeek 关键 RL 算法 GRPO
进一步有进一步的欢喜
LLM算法DeepSeekGRPO
DeepSeekGRPO:面向超大规模RLHF的梯度正则化策略优化算法引言在当下人工智能蓬勃发展的浪潮里,DeepSeek无疑是一颗耀眼的明星,频繁出现在各类科技前沿讨论中,热度持续攀升。从惊艳的模型表现,到不断拓展的应用场景,DeepSeek正以强劲之势重塑着行业格局。大家不难发现,无论是复杂的自然语言处理任务,还是充满挑战的智能推理难题,DeepSeek都能展现出卓越的性能。而这斐然成绩的背后
- 【深度学习】Transformer入门:通俗易懂的介绍
知识靠谱
深度学习深度学习transformer人工智能
【深度学习】Transformer入门:通俗易懂的介绍一、引言二、从前的“读句子”方式三、Transformer的“超级阅读能力”四、Transformer是怎么做到的?五、Transformer的“多视角”能力六、Transformer的“位置记忆”七、Transformer的“翻译流程”八、Transformer为什么这么厉害?九、Transformer的应用十、总结一、引言在自然语言处理(N
- Python常见库的使用
浪子西科
Pythonpython开发语言
文章目录人工智能与机器学习1.NumPy2.Pandas3.Scikit-learn4.TensorFlow5.PyTorch数据可视化1.Matplotlib2.Seaborn网络请求与爬虫1.Requests2.Scrapy自动化测试1.unittest2.pytest自然语言处理1.NLTK2.SpaCy数据库操作1.SQLite32.SQLAlchemy日期和时间处理1.datetime2
- OpenAI: 人工智能领域的领军企业
2401_87458718
人工智能
OpenAI简介OpenAI是一家位于美国旧金山的人工智能研究实验室,成立于2015年。作为人工智能领域的领军企业,OpenAI致力于开发安全友好的通用人工智能(AGI),其使命是确保人工通用智能能够造福全人类。自成立以来,OpenAI在自然语言处理、计算机视觉、强化学习等多个人工智能领域取得了突破性进展,推出了一系列广受关注的AI模型和产品。OpenAI的发展历程OpenAI由埃隆·马斯克、山姆
- Python微调DeepSeek-R1-Distill-Qwen-1.5B模型:使用Transformers和PyTorch进行训练
煤炭里de黑猫
pytorchpython人工智能机器学习
前言近年来,基于Transformer架构的预训练语言模型如GPT、BERT等已经取得了显著的成果,广泛应用于自然语言处理(NLP)的各个领域。为了让这些模型更加适应特定任务,我们通常会进行微调(Fine-tuning)。本博客将详细介绍如何微调一个名为Qwen-1.5B的模型,使用HuggingFace的Transformers库与PyTorch框架来实现。我们将通过一步步的代码解析,帮助你理解
- 学习心得体会:深入探讨大语言模型的世界——读《自然语言处理:大模型理论与实践》(预览版)有感
Nuyoah_610
自然语言处理学习语言模型
《自然语言处理:大模型理论与实践》(预览版)由赵宇教授编写,是一本深入探讨大语言模型世界的专业著作。作为一名正在学习和研究自然语言处理的学生,这本书为我提供了宝贵的理论基础和实践指导。《自然语言处理:大模型理论与实践》教材官网:首页|自然语言处理:大模型理论与实践赵宇教授简介西南财经大学教授,博导,四川省学术和技术带头人后备人选,金融智能与金融工程四川省重点实验室副主任,通用人工智能与数字经济创新
- 深入Java自然语言交互的情感分析:从零构建智能情感检测系统
墨夶
Java学习资料2java交互开发语言
在这个信息爆炸的时代,如何快速准确地理解大量文本背后的情绪成为了企业和个人关注的焦点。无论是社交媒体监控、产品评论分析还是客户服务优化,情感分析技术都发挥着至关重要的作用。今天,我们将带您一步步构建一个基于Java的情感分析应用,让您不仅能够理解其背后的原理,还能亲手实现这一强大的工具。技术栈简介在开始之前,我们需要了解几个关键的技术点:StanfordNLP:提供了一套全面的自然语言处理功能,包
- NLP作业02:课程设计报告
0255-
自然语言处理课程设计人工智能
NLP作业02:课程设计报告作业头这个作业属于那个课程自然语言处理这个作业要求在哪里NLP作业02:课程设计报告我在这个课程的目标是通过综合应用项目的实施,培养团队协作沟通能力和运用现代工具分析和解决复杂工程问题的能力这个作业在那个具体方面帮助我实现目标能综合运用所学理论知识和操作技能进行实际工程项目的设计开发参考文献http://t.csdn.cn/mu8sF垃圾短信分类1.设计目的通过课程设计
- 即插即用的注意力机制21种
@Mr_LiuYang
论文阅读AttentionModule注意力机制即插即用
提示:谬误之处请指出更正摘要随着深度学习特别是自然语言处理领域的飞速发展,注意力机制(AttentionMechanism)已成为提升模型表现的关键技术,本文主要记录了即插即用的注意力机制结构的功能、出处及核心代码。1、SEBlock(Squeeze-and-Excitation)功能:自适应学习通道权重,增强重要通道特征。出处:SENet#SEBlock(PyTorch)classSEBlock
- 自然语言处理(NLP):文本向量化从文字到数字的原理
全栈你个大西瓜
人工智能自然语言处理人工智能文本向量化NLP
在人工智能领域,尤其是自然语言处理(NLP)中,将文本信息转化为机器可以理解的形式是一个至关重要的步骤。本文探讨如何将文本转换为向量表示的过程,包括分词、ID映射、One-hot编码以及最终的词嵌入(Embedding),并通过具体的案例代码来辅助解释这些概念。处理字符还是数字人工智能算法只能处理数字形式的数据,特别是浮点数。这意味着任何非数字的信息,如汉字、字母等,都需要被转换成数值形式才能用于
- 初学者推荐学习AI的路径
ProgramHan
学习人工智能
学习人工智能的路径可以分为基础知识、编程技能、机器学习、深度学习、数据处理与可视化、自然语言处理(NLP)、计算机视觉(CV)、强化学习、实践项目和持续学习几个阶段。以下是一个简要的路径:1️⃣基础知识数学基础(线性代数、微积分、概率统计)编程基础(Python/R等语言)算法与数据结构2️⃣机器学习基础理解监督学习(如回归、分类)、无监督学习(如聚类、PCA)掌握机器学习库(如scikit-le
- 使用 DistilBERT 进行资源高效的自然语言处理
真智AI
自然语言处理人工智能
DistilBERT是BERT的一个更小、更快的版本,在减少资源消耗的同时仍能保持良好性能。对于计算能力和内存受限的环境来说,它是一个理想的选择。在自然语言处理(NLP)中,像BERT这样的模型提供了高精度和出色的性能。然而,它们需要大量的内存和计算资源,这对于资源有限的组织来说是一个挑战。同时,对于需要快速响应的任务来说,这也是一个问题。DistilBERT通过缩小模型规模并加快推理速度来解决这
- DeepSeek高能AI:低成本高效应用突破
智能计算研究中心
其他
内容概要DeepSeek高能AI系统通过混合专家架构(Mixture-of-Experts)实现了技术范式的突破,其670亿参数的模型规模在保证计算效率的同时,构建了多模态处理能力的技术护城河。该系统整合自然语言处理与视觉语言理解的双通道架构,使文本生成、图像解析和跨模态推理形成协同效应。在应用层面,该模型通过动态路由机制实现功能模块的精准调度,为学术研究、商业运营和技术开发提供多场景解决方案。核
- 深度学习与搜索引擎优化的结合:DeepSeek的创新与探索
m0_74825634
面试学习路线阿里巴巴深度学习搜索引擎人工智能
目录引言1.传统搜索引擎的局限性2.深度学习在搜索引擎中的作用3.DeepSeek实现搜索引擎优化的关键技术3.1神经网络与搜索引擎优化3.2自然语言处理与查询理解3.3深度强化学习与搜索结果排序4.DeepSeek的深度学习架构4.1?查询解析与语义理解4.2?搜索排名与相关性排序4.3?个性化推荐与用户行为分析5、总结引言随着人工智能(AI)技术的迅速发展,深度学习(DeepLearning)
- 2025预测趋势:AI知识库工具挑选指南
知识库知识库管理知识库软件
随着人工智能技术的飞速发展,AI知识库工具已成为企业和个人管理知识资产的重要手段。本文将探讨2025年AI知识库工具的预测趋势,并推荐六款精选工具,帮助用户挑选最适合的AI知识库解决方案。1.AI知识库的智能化:趋势预计到2025年,AI知识库工具将更加智能化,通过深度学习和自然语言处理技术,实现更精准的语义搜索和智能问答功能。这些工具将能够理解用户的查询意图,提供更准确和相关的信息。2.实时自动
- 【DeepSeek零基础入门】从零开始:如何训练自己的AI模型
Evaporator Core
DeepSeek进阶开发与应用#DeepSeek快速入门deepseek应用开发实例deepseek
从零开始:如何训练自己的AI模型在人工智能的世界里,训练一个属于自己的AI模型,就像是在培养一个新生儿。你需要耐心、技巧,以及对数据的深刻理解。今天,我们将一起探索如何从零开始,训练一个AI模型,并通过一个具体的案例来加深理解。第一步:明确目标与选择框架在开始之前,首先要明确你的AI模型需要解决什么问题。是图像识别、自然语言处理,还是预测分析?明确目标后,选择一个合适的机器学习框架至关重要。Ten
- ollama安装(ubuntu20.04)
名栩
#ollama大模型实战LLMollama安装
Ollama是一款开源的自然语言处理工具,它可以帮助开发者快速构建文本处理应用。ollama官网:https://ollama.ai/一、ollama自动安装linux统一采用sh脚本安装,一个命令行搞定。curl-fsSLhttps://ollama.com/install.sh|sh二、ollama手动安装ollama自动安装是通过github拉取下载包(现在安装包已经1G以上),在国内经常下
- DeepSeek在MATLAB上的部署与应用
CodeJourney.
数据库人工智能算法架构
在科技飞速发展的当下,人工智能与编程语言的融合不断拓展着创新边界。DeepSeek作为一款备受瞩目的大语言模型,其在自然语言处理领域展现出强大的能力。而MATLAB,作为科学计算和工程领域广泛应用的专业软件,拥有丰富的工具包和高效的算法环境。将DeepSeek部署在MATLAB上,能够充分发挥两者的优势,为众多领域带来全新的解决方案和无限可能。本文将深入探讨如何在MATLAB上部署DeepSeek
- 为什么词向量和权重矩阵dot运算就能得到想要的效果呢?
cjl30804
矩阵线性代数nlp
最近在学习NLP算法的时候,进入到了深水区以后,发现了弄懂这个才是核心中的核心,抓住了主要矛盾了。特意拿出来跟大家分享。词向量(WordEmbeddings)和权重矩阵的点积运算之所以能够帮助我们实现特定的效果,主要是因为它们在神经网络架构中扮演的角色以及背后的数学原理。具体来说,在自然语言处理任务中,这种操作通常出现在如Transformer模型中的自注意力机制里。让我们深入探讨一下为什么这种方
- Engineering A Large Language Model From Scratch
UnknownBody
语言模型人工智能自然语言处理
本文是LLM系列文章,针对《EngineeringALargeLanguageModelFromScratch》的翻译。从头开始设计一个大语言模型摘要1引言2Atinuke算法3结果4相关工作5讨论6结论摘要自然语言处理(NLP)中深度学习的激增导致了创新技术的发展和发布,这些技术能够熟练地理解和生成人类语言。Atinuke是一种基于Transformer的神经网络,通过使用独特的配置来优化各种语
- 智能测试执行 利用算法 利用图像识别、自然语言处理等技术实现自动化测试执行
小赖同学啊
python人工智能自动化测试(apppcAPI)自然语言处理人工智能
以下将从Web应用和移动应用两个方面,给出利用图像识别、自然语言处理等技术实现自动化测试执行的实例,并附上部分代码示例。Web应用自动化测试实例:模拟用户登录操作测试需求理解对于一个Web应用的登录功能进行自动化测试,我们可以结合自然语言处理理解测试用例描述,用图像识别来验证登录成功后的页面元素,以确保登录功能正常。实现步骤与代码示例importtimeimportpyautoguiimportp
- 如何在Java中实现多头注意力机制:从Transformer模型入手
省赚客app开发者
javatransformer开发语言
如何在Java中实现多头注意力机制:从Transformer模型入手大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!多头注意力机制(Multi-HeadAttention)是Transformer模型中的关键组件,广泛用于自然语言处理(NLP)任务中。它允许模型在不同的子空间中并行地关注输入序列的不同部分,从而提高了模型的表达能力。在本文中,我们将详细介绍如何在Jav
- DeepSeek 赋能教育教学:开启智能教育的无限可能
AI_DL_CODE
人工智能深度学习辅助决策DeepSeek
摘要:本文深入探讨了DeepSeek在教育教学岗的应用。它能助力教师快速生成教学课件,整合丰富素材,简化制作流程;依据课程大纲设计在线课程内容,规划模块、设计互动;通过分析多维度学习数据,为学生提供个性化辅导建议和学习计划;利用自然语言处理等技术辅助作业批改和答疑解惑。使用时需注意数据质量与隐私保护、结合教师专业判断及持续学习探索功能。DeepSeek为教育教学带来变革,提升效率和质量,推动个性化
- DeepSeek 深度赋能客服岗:效率与洞察的双重飞跃
AI_DL_CODE
人工智能深度学习DeepSeek工作助理
摘要:本文聚焦于DeepSeek在客服服务岗的应用。它能凭借自然语言处理技术,快速理解客户咨询,精准提供解答方案;自动生成标准化、个性化的回复话术,大幅提升客服效率;利用机器学习对客户反馈进行深度分析,挖掘潜在需求与市场趋势。通过电商、互联网服务等行业案例,展现其实际成效。使用时需注意数据质量与隐私保护,促进与人工客服协同配合,持续优化学习。DeepSeek为客服工作带来变革,助力企业提升服务质量
- Transformer大模型实战 教师 学生架构
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer大模型实战教师学生架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来近年来,随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进步。其中,Transformer模型作为一种基于自注意力机制的深度神经网络结构,因其优越的性能和灵活的适用性,在NLP任务中得到了广泛应用。然而,Trans
- 如何在Java中设计高效的Transformer模型架构
省赚客app开发者
javatransformer架构
如何在Java中设计高效的Transformer模型架构大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!Transformer模型自从2017年提出以来,凭借其出色的性能和灵活性,在自然语言处理(NLP)和其他领域取得了显著的成功。Transformer的核心在于其自注意力机制和位置编码,它使得模型能够处理长距离依赖,并有效地进行序列到序列的转换。本文将介绍如何在Ja
- 基于大模型的 SDL 需求阶段安全需求挖掘实战指南 —— 四步法实现从业务需求到风险矩阵的智能转换
大F的智能小课
大模型理论和实战人工智能语言模型算法安全
在软件开发生命周期(SDL)中,需求阶段的安全需求挖掘至关重要,它直接影响到软件的安全性和可靠性。随着大模型技术的发展,我们可以利用其强大的自然语言处理和知识图谱能力,实现从业务需求到风险矩阵的智能转换。本文将介绍一种基于大模型的四步法,帮助安全团队高效挖掘安全需求。一、业务需求解析:大模型驱动的语义理解目标:将自然语言描述的业务需求转化为结构化安全要素。方法:需求文本预处理:使用大模型(如GPT
- 金融大模型应用的机遇与挑战
Python程序员罗宾
金融人工智能语言模型数据库自然语言处理
大模型本质特征大模型通常指大语言模型(LargeLanguageModel,LLM),是基于深度学习算法的自然语言处理技术,是通用大模型。大模型也在从单一自然语言处理模态向语音、图像等多模态大模型演进。目前国内外推出了众多的大模型,国内就不下上百款,也因此被称为“百模大战”或“千模大战”。但很多所谓的“大模型”仅是叫“大模型”而已,不管参数量多少,都不能称为真正的大模型。参数量是大模型的一个特征,
- DeepSeek vs ChatGPT:AI 领域的华山论剑,谁主沉浮?
晨陌y
chatgpt人工智能
一、引言在当今科技飞速发展的时代,人工智能(AI)已然成为推动各领域变革的核心力量。而在人工智能的众多分支中,自然语言处理(NLP)因其与人类日常交流和信息处理的紧密联系,成为了最受瞩目的领域之一。在这片充满创新与突破的领域里,DeepSeek和ChatGPT犹如两颗璀璨的明星,吸引着全球开发者、研究人员以及广大普通用户的目光。它们代表着当前AI语言模型的顶尖水准,一场关于“谁主沉浮”的激烈较量正
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开