l利用sklearn进行One-Hot转换

3.One-Hot Encode with scikit-learn:

在这个例子中,我们假设你有一个输出序列如下3个标签:

Cold,warm,hot

10个时间序列的示例顺序可以是:

Cold,cold,warm,cold,hot,hot,warm,cold,warm,hot

这将首先需要一个整数编码,如1,2,3,然后是整数到one hot编码具有3个值的二进制向量,例如[1,0,0]。

这个情况下提供序列中每个可能值的至少一个示例。因此,我们可以使用自动方法来定义整数到二进制向量的映射。

在这个例子中,我们将使用scikit学习库的编码器。具体来说,LabelEncoder创建标签的整数编码,OneHotEncoder用于创建整数编码值的one hot编码。

from numpy import array
from numpy import argmax
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
# define example
data = ['cold', 'cold', 'warm', 'cold', 'hot', 'hot', 'warm', 'cold', 'warm', 'hot']
values = array(data)
print(values)
# integer encode
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(values)
print(integer_encoded)
# binary encode
onehot_encoder = OneHotEncoder(sparse=False)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
onehot_encoded = onehot_encoder.fit_transform(integer_encoded)
print(onehot_encoded)
# invert first example
inverted = label_encoder.inverse_transform([argmax(onehot_encoded[0, :])])
print(inverted)

运行示例首先打印标签序列。之后是标签的整数编码,最后是one hot编码。训练数据包含所有可能示例的集合,因此我们可以依靠整数和one hot编码变换来创建标签到编码的完整映射。

默认情况下,OneHotEncoder类将返回更高效的稀疏编码,这可能不适用于某些应用程序。例如使用Keras深度学习库。在这种情况下,我们通过设置sparse = False这个参数来禁用稀疏返回类型。

首先,我们可以使用argmax()NumPy函数来找到具有最大值的列的索引。然后可以将其输入到LabelEncoder,以计算反向变换回文本标签。运行结果为:

[‘cold’ ‘cold’ ‘warm’ ‘cold’ ‘hot’ ‘hot’ ‘warm’ ‘cold’ ‘warm’ ‘hot’]

[0 0 2 0 1 1 2 0 2 1]

[[ 1. 0. 0.]

[ 1. 0. 0.]

[ 0. 0. 1.]

[ 1. 0. 0.]

[ 0. 1. 0.]

[ 0. 1. 0.]

[ 0. 0. 1.]

[ 1. 0. 0.]

[ 0. 0. 1.]

[ 0. 1. 0.]]

[‘cold’]

在下一个例子中,我们来看一下如何直接对一个整数值进行one hot编码。

你可能感兴趣的:(机器学习)