目录
树与树算法
树的概念
树的术语
树的种类
树的存储与表示
常见的一些树的应用场景
二叉树
二叉树的基本概念
二叉树的性质(特性)
二叉树的节点表示以及树的创建
二叉树的遍历
深度优先遍历
广度优先遍历(层次遍历)
树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
顺序存储:将数据结构存储在固定的数组中,然在遍历速度上有一定的优势,但因所占空间比较大,是非主流二叉树。二叉树通常以链式存储。
链式存储:
由于对节点的个数无法掌握,常见树的存储表示都转换成二叉树进行处理,子节点个数最多为2
1.xml,html等,那么编写这些东西的解析器的时候,不可避免用到树
2.路由协议就是使用了树的算法
3.mysql数据库索引
4.文件系统的目录结构
5.所以很多经典的AI算法其实都是树搜索,此外机器学习中的decision tree也是树结构
二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)
性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0)
性质2: 深度为k的二叉树至多有2^k - 1个结点(k>0)
性质3: 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
性质4:具有n个结点的完全二叉树的深度必为 log2(n+1)
性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)
(1)完全二叉树——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。
(2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。
通过使用Node类中定义三个属性,分别为elem本身的值,还有lchild左孩子和rchild右孩子
class Node(object):
"""节点类"""
def __init__(self, elem=-1, lchild=None, rchild=None):
self.elem = elem
self.lchild = lchild
self.rchild = rchild
树的创建,创建一个树的类,并给一个root根节点,一开始为空,随后添加节点
class Tree(object):
"""树类"""
def __init__(self, root=None):
self.root = root
def add(self, elem):
"""为树添加节点"""
node = Node(elem)
#如果树是空的,则对根节点赋值
if self.root == None:
self.root = node
else:
queue = []
queue.append(self.root)
#对已有的节点进行层次遍历
while queue:
#弹出队列的第一个元素
cur = queue.pop(0)
if cur.lchild == None:
cur.lchild = node
return
elif cur.rchild == None:
cur.rchild = node
return
else:
#如果左右子树都不为空,加入队列继续判断
queue.append(cur.lchild)
queue.append(cur.rchild)
树的遍历是树的一种重要的运算。所谓遍历是指对树中所有结点的信息的访问,即依次对树中每个结点访问一次且仅访问一次,我们把这种对所有节点的访问称为遍历(traversal)。那么树的两种重要的遍历模式是深度优先遍历和广度优先遍历,深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。
对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。
def preorder(self, root):
"""递归实现先序遍历"""
if root == None:
return
print root.elem
self.preorder(root.lchild)
self.preorder(root.rchild)
def inorder(self, root):
"""递归实现中序遍历"""
if root == None:
return
self.inorder(root.lchild)
print root.elem
self.inorder(root.rchild)
def postorder(self, root):
"""递归实现后续遍历"""
if root == None:
return
self.postorder(root.lchild)
self.postorder(root.rchild)
print root.elem
课堂练习: 按照如图树的结构写出三种遍历的顺序:
结果:
先序:a b c d e f g h
中序:b d c e a f h g
后序:d e c b h g f a
思考:哪两种遍历方式能够唯一的确定一颗树???
从树的root开始,从上到下从从左到右遍历整个树的节点
def breadth_travel(self, root):
"""利用队列实现树的层次遍历"""
if root == None:
return
queue = []
queue.append(root)
while queue:
node = queue.pop(0)
print node.elem,
if node.lchild != None:
queue.append(node.lchild)
if node.rchild != None:
queue.append(node.rchild)