原文链接:http://tecdat.cn/?p=6632
=========================================================
我将建立道琼斯工业平均指数(DJIA)日交易量对数比的ARMA-GARCH模型。
获取数据
load(file='DowEnvironment.RData')
日交易量
每日交易量内发生的 变化。
plot(dj_vol)
首先,我们验证具有常数均值的线性回归在统计上是显着的。
在休息时间= 6时达到最小BIC。
以下是道琼斯日均交易量与水平变化(红线) 。
plot(bb,
summary(bp_dj_vol)
##
## Optimal(m + 1)段分区:
##
##致电:
## breakpoints.formula(formula = dj_vol~1,h = 0.1)
##
##观察编号的断点:
##
## m = 1 2499
## m = 2 896 2499
## m = 3 626 1254 2499
## m = 4 342 644 1254 2499
## m = 5 342 644 1219 1649 2499
## m = 6 320 622 924 1251 1649 2499
## m = 7 320 622 924 1251 1692 2172 2499
## m = 8 320 622 924 1251 1561 1863 2172 2499
##
##对应于breakdates:
##
## m = 1
## m = 2 0.296688741721854
## m = 3 0.207284768211921
## m = 4 0.113245033112583 0.213245033112583
## m = 5 0.113245033112583 0.213245033112583
## m = 6 0.105960264900662 0.205960264900662 0.305960264900662
## m = 7 0.105960264900662 0.205960264900662 0.305960264900662
## m = 8 0.105960264900662 0.205960264900662 0.305960264900662
##
## m = 1
## m = 2
## m = 3 0.41523178807947
## m = 4 0.41523178807947
## m = 5 0.40364238410596 0.546026490066225
## m = 6 0.414238410596027 0.546026490066225
## m = 7 0.414238410596027 0.560264900662252
## m = 8 0.414238410596027 0.516887417218543 0.616887417218543
##
## m = 1 0.827483443708609
## m = 2 0.827483443708609
## m = 3 0.827483443708609
## m = 4 0.827483443708609
## m = 5 0.827483443708609
## m = 6 0.827483443708609
## m = 7 0.719205298013245 0.827483443708609
## m = 8 0.719205298013245 0.827483443708609
##
##适合:
##
## m 0 1 2 3 4 5 6
## RSS 3.872e + 19 2.772e + 19 1.740e + 19 1.547e + 19 1.515e + 19 1.490e + 19 1.475e + 19
## BIC 1.206e + 05 1.196e + 05 1.182e + 05 1.179e + 05 1.178e + 05 1.178e + 05 1.178e + 05
##
## m 7 8
## RSS 1.472e + 19 1.478e + 19
## BIC 1.178e + 05 1.178e + 05
plot(bp_dj_vol)
lwd = c(3,1), col = c("red", "black"))
每日交易量对数比率模型
每日交易量对数比率:
plot(dj_vol_log_ratio)
异常值检测
下面我们将原始时间序列与调整后的异常值进行比较。
相关图
pacf(dj_vol_log_ratio)
上图可能表明 ARMA(p,q)模型的p和q> 0.
单位根测试
我们 提供Augmented Dickey-Fuller测试。
根据 测试统计数据与临界值进行比较,我们拒绝单位根存在的零假设。
ARMA模型
我们现在确定时间序列的ARMA结构,以便对结果残差运行ARCH效果测试。
ma1系数在统计上不显着。因此,我们尝试使用以下ARMA(2,3)模型。
所有系数都具有统计显着性,AIC低于第一个模型。然后我们尝试使用ARMA(1,2)。
## arima(x = dj_vol_log_ratio,order = c(1,0,2),include.mean = FALSE)
##
##系数:
## ar1 ma1 ma2
## 0.6956 -1.3183 0.3550
## se 0.0439 0.0518 0.0453
##
## sigma ^ 2估计为0.06598:对数似然= -180.92,aic = 367.84
coeftest(arma_model_3)
##
## z系数测试:
##
## Estimate Std。误差z值Pr(> | z |)
## ar1 0.695565 0.043874 15.8537 <2.2e-16 ***
## ma1 -1.318284 0.051787 -25.4557 <2.2e-16 ***
## ma2 0.355015 0.045277 7.8409 4.474e-15 ***
## ---
## Signif。代码:0'***'0.001'**'0.01'*'0.05'。' 0.1''1
该模型在集合中具有最高的AIC,并且所有系数具有统计显着性。
我们还可以尝试 进一步验证。
eacf(dj_vol_log_ratio)
## AR / MA
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 0 xooxxooxooxooo
## 1 xxoxoooxooxooo
## 2 xxxxooooooxooo
## 3 xxxxooooooxooo
## 4 xxxxxoooooxooo
## 5 xxxxoooooooooo
## 6 xxxxxoxooooooo
## 7 xxxxxooooooooo
以“O”为顶点的左上角三角形似乎位于{(1,2),(2,2),(1,3),(2,3)}之内,代表潜在的集合( p,q)根据eacf()函数输出的值。
我们已经在集合{(3,2)(2,3)(1,2)}内验证了具有(p,q)阶的ARMA模型。让我们试试{(2,2)(1,3)}
## arima(x = dj_vol_log_ratio,order = c(2,0,2),include.mean = FALSE)
##
##系数:
## ar1 ar2 ma1 ma2
## 0.7174 -0.0096 -1.3395 0.3746
## se 0.1374 0.0560 0.1361 0.1247
##
## sigma ^ 2估计为0.06598:对数似然= -180.9,aic = 369.8
coeftest(arma_model_4)
##
## z系数测试:
##
## Estimate Std。误差z值Pr(> | z |)
## ar1 0.7173631 0.1374135 5.2205 1.785e-07 ***
## ar2 -0.0096263 0.0560077 -0.1719 0.863536
## ma1 -1.3394720 0.1361208 -9.8403 <2.2e-16 ***
## ma2 0.3746317 0.1247117 3.0040 0.002665 **
## ---
## Signif。代码:0'***'0.001'**'0.01'*'0.05'。' 0.1''1
ar2系数在统计上不显着。
(
## arima(x = dj_vol_log_ratio,order = c(1,0,3),include.mean = FALSE)
##
##系数:
## ar1 ma1 ma2 ma3
## 0.7031 -1.3253 0.3563 0.0047
## se 0.0657 0.0684 0.0458 0.0281
##
## sigma ^ 2估计为0.06598:对数似然= -180.9,aic = 369.8
coeftest(arma_model_5)
##
## z系数测试:
##
## Estimate Std。误差z值Pr(> | z |)
## ar1 0.7030934 0.0656902 10.7032 <2.2e-16 ***
## ma1 -1.3253176 0.0683526 -19.3894 <2.2e-16 ***
## ma2 0.3563425 0.0458436 7.7730 7.664e-15 ***
## ma3 0.0047019 0.0280798 0.1674 0.867
## ---
## Signif。代码:0'***'0.001'**'0.01'*'0.05'。' 0.1''1
ma3系数在统计上不显着。
ARCH效果测试
如果ARCH效应对于我们的时间序列的残差具有统计显着性,则需要GARCH模型。
我们测试候选平均模型ARMA(2,3)。
##
## ARCH LM-test; 空假设:没有ARCH效应
##
## data:resid_dj_vol_log_ratio - mean(resid_dj_vol_log_ratio)
##卡方= 78.359,df = 12,p值= 8.476e-12
根据报告的p值,我们拒绝无ARCH效应的零假设。
让我们看一下残差相关图。
`par(mfrow=c(1,2))
acf(resid_dj_vol_log_ratio)
pacf(resid_dj_vol_log_ratio)`
我们测试了第二个候选平均模型ARMA(1,2)。
re
## ARCH LM-test; 空假设:没有ARCH效应
##
## data:resid_dj_vol_log_ratio - mean(resid_dj_vol_log_ratio)
##卡方= 74.768,df = 12,p值= 4.065e-11
根据报告的p值,我们拒绝无ARCH效应的零假设。
让我们看一下残差相关图。
`par(mfrow=c(1,2))
acf(resid_dj_vol_log_ratio)
pacf(resid_dj_vol_log_ratio)`
要检查 对数比率内的不对称性,将显示汇总统计数据和密度图。
## DJI.Volume
## nobs 3019.000000
## NAs 0.000000
##最低-2.301514
##最大2.441882
## 1. Quartile -0.137674
## 3.四分位数0.136788
##平均值-0.000041
##中位数-0.004158
## Sum -0.124733
## SE平均值0.005530
## LCL平均值-0.010885
## UCL平均值0.010802
##差异0.092337
## Stdev 0.303869
## Skewness -0.182683
## Kurtosis 9.463384
plot(density(dj_vol_log_ratio))
因此,对于每日交易量对数比,还将提出eGARCH模型。
为了将结果与两个候选平均模型ARMA(1,2)和ARMA(2,3)进行比较,我们进行了两次拟合
ARMA-GARCH:ARMA(1,2)+ eGARCH(1,1)
所有系数都具有统计显着性。然而,基于上面报道的标准化残差p值的加权Ljung-Box检验,我们拒绝了对于本模型没有残差相关性的零假设。
ARMA-GARCH:ARMA(2,3)+ eGARCH(1,1)
##最佳参数
## ------------------------------------
## Estimate Std。误差t值Pr(> | t |)
## ar1 0.67731 0.014856 45.5918 0.0e + 00
## ma1 -1.22817 0.000038 -31975.1819 0.0e + 00
## ma2 0.27070 0.000445 608.3525 0.0e + 00
## omega -1.79325 0.207588 -8.6385 0.0e + 00
## alpha1 0.14348 0.032569 4.4053 1.1e-05
## beta1 0.35819 0.073164 4.8957 1.0e-06
## gamma1 0.41914 0.042252 9.9199 0.0e + 00
## skew 1.32266 0.031528 41.9518 0.0e + 00
##形状3.54346 0.221750 15.9795 0.0e + 00
##
##强大的标准错误:
## Estimate Std。误差t值Pr(> | t |)
## ar1 0.67731 0.022072 30.6859 0.0e + 00
## ma1 -1.22817 0.000067 -18466.0626 0.0e + 00
## ma2 0.27070 0.000574 471.4391 0.0e + 00
## omega -1.79325 0.233210 -7.6894 0.0e + 00
## alpha1 0.14348 0.030588 4.6906 3.0e-06
## beta1 0.35819 0.082956 4.3178 1.6e-05
## gamma1 0.41914 0.046728 8.9698 0.0e + 00
## skew 1.32266 0.037586 35.1902 0.0e + 00
##形状3.54346 0.238225 14.8744 0.0e + 00
##
## LogLikelihood:347.9765
##
##信息标准
## ------------------------------------
##
## Akaike -0.22456
## Bayes -0.20664
## Shibata -0.22458
## Hannan-Quinn -0.21812
##
##标准化残差的加权Ljung-Box检验
## ------------------------------------
##统计p值
##滞后[1] 0.5812 4.459e-01
##滞后[2 *(p + q)+(p + q)-1] [8] 8.5925 3.969e-08
##滞后[4 *(p + q)+(p + q)-1] [14] 14.1511 4.171e-03
## dof = 3
## H0:无序列相关
##
##标准化平方残差的加权Ljung-Box检验
## ------------------------------------
##统计p值
##滞后[1] 0.4995 0.4797
## Lag [2 *(p + q)+(p + q)-1] [5] 1.1855 0.8164
## Lag [4 *(p + q)+(p + q)-1] [9] 2.4090 0.8510
## dof = 2
##
##加权ARCH LM测试
## ------------------------------------
##统计形状比例P值
## ARCH Lag [3] 0.4215 0.500 2.000 0.5162
## ARCH Lag [5] 0.5974 1.440 1.667 0.8545
## ARCH Lag [7] 1.2835 2.315 1.543 0.8636
##
## Nyblom稳定性测试
## ------------------------------------
##联合统计:5.2333
##个人统计:
## ar1 0.63051
## ma1 1.18685
## ma2 1.11562
## omega 2.10211
## alpha1 0.08261
## beta1 2.07607
## gamma1 0.15883
## skew 0.33181
##形状2.56140
##
##渐近临界值(10%5%1%)
##联合统计:2.1 2.32 2.82
##个人统计:0.35 0.47 0.75
##
##签名偏差测试
## ------------------------------------
## t-value prob sig
## Sign Bias 1.600 0.10965
##负符号偏差0.602 0.54725
## Positive Sign Bias 2.540 0.01115 **
##联合效应6.815 0.07804 *
##
##
##调整Pearson拟合优度测试:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 20.37 0.3726
## 2 30 36.82 0.1510
## 3 40 45.07 0.2328
## 4 50 52.03 0.3567
##
##
##经过的时间:1.364722
所有系数都具有统计显着性。没有找到标准化残差或标准化平方残差的相关性。模型可以正确捕获所有ARCH效果。调整后的Pearson拟合优度检验不拒绝零假设,即标准化残差的经验分布和所选择的理论分布是相同的。然而:
*对于其中一些模型参数随时间变化恒定的Nyblom稳定性测试零假设被拒绝
`par(mfrow=c(2,2))
plot(garchfit, which=8)
plot(garchfit, which=9)
plot(garchfit, which=10)
plot(garchfit, which=11)`
我们用平均模型拟合(红线)和条件波动率(蓝线)显示原始道琼斯日均交易量对数时间序列。
对数波动率分析
以下是我们的模型ARMA(2,2)+ eGARCH(1,1)产生的条件波动率图。
plot(cond_volatility)
显示了按年度的条件波动率的线图。
`par(mfrow=c(6,2))
pl <- lapply(2007:2018, function(x) { plot(cond_volatility[as.character(x)], main = "DJIA Daily Volume Log-ratio conditional volatility")})
pl`
显示了按年度计算的条件波动率框图。
结论
我们研究了基本统计指标,如平均值,偏差,偏度和峰度,以了解多年来价值观的差异,以及价值分布对称性和尾部。从这些摘要开始,我们获得了平均值,中位数,偏度和峰度指标的有序列表,以更好地突出多年来的差异。
密度图可以了解我们的经验样本分布的不对称性和尾部性。
对于对数回报,我们构建了ARMA-GARCH模型(指数GARCH,特别是作为方差模型),以获得条件波动率。同样,可视化作为线和框图突出显示了年内和年之间的条件波动率变化。这种调查的动机是,波动率是变化幅度的指标,用简单的词汇表示,并且是应用于资产的对数收益时的基本风险度量。有几种类型的波动性(有条件的,隐含的,实现的波动率)。
交易量可以被解释为衡量市场活动幅度和投资者兴趣的指标。计算交易量指标(包括波动率)可以了解这种活动/利息水平如何随时间变化。