Hive案例---日志数据文件分析

案例一

Hive案例---日志数据文件分析_第1张图片

Hive案例---日志数据文件分析_第2张图片

-》需求:统计24小时内的每个时段的pv和uv
 -》pv统计总的浏览量
 -》uv统计guid去重后的总量  
 -》获取时间字段,日期和小时  -》分区表

-》数据清洗:获取日期和小时,获取想要字段
 -》2015-08-28 18:14:59    -》28和18  substring方式获取
 
-》数据分析
 -》hive :select sql
-》数据导出:
 -》sqoop:导出mysql
-》最终结果预期:
 日期 小时 pv  uv
 -》日期和小时:tracktime
 -》pv:url
 -》uv:guid


1.【数据收集】

登陆hive:

启动服务端:bin/hiveserver2 &

启动客户端:bin/beeline -u jdbc:hive2://node-1:10000/ -n ibeifeng -p 123456

创建源表:

create database track_log;

create table yhd_source(
id                                 string,
url                                string,
referer                            string,
keyword                            string,
type                               string,
guid                               string,
pageId                             string,
moduleId                           string,
linkId                             string,
attachedInfo                       string,
sessionId                          string,
trackerU                           string,
trackerType                        string,
ip                                 string,
trackerSrc                         string,
cookie                             string,
orderCode                          string,
trackTime                          string,
endUserId                          string,
firstLink                          string,
sessionViewNo                      string,
productId                          string,
curMerchantId                      string,
provinceId                         string,
cityId                             string,
fee                                string,
edmActivity                        string,
edmEmail                           string,
edmJobId                           string,
ieVersion                          string,
platform                           string,
internalKeyword                    string,
resultSum                          string,
currentPage                        string,
linkPosition                       string,
buttonPosition                     string
)
row format delimited fields terminated by '\t';

load data local inpath '/opt/datas/2015082818' into table yhd_source;
load data local inpath '/opt/datas/2015082819' into table yhd_source;

2. 【数据清洗】

时间是2015082812,需要截取日期28,时间12

创建清洗表

create table yhd_qingxi(
id string,
url string,
guid string,
date string,
hour string
)

row format delimited fields terminated by '\t';

insert into table yhd_qingxi select id,url,guid,substring(trackTime,9,2) date,substring(trackTime,12,2) from yhd_source;

select id,url,guid,date,hour from yhd_source;


创建分区表:根据时间字段进行分区,分区的好处是检索速度加快

create table yhd_part(
id string,
url string,
guid string
)partitioned by (date string,hour string)
row format delimited fields terminated by '\t';

insert into table yhd_part partition(date='20150828',hour='18');

select id,url,guid from yhd_qingxi where date='28' and hour='18';


insert into table yhd_part partition(date='20150828',hour='19')
select id,url,guid from yhd_qingxi where date='28' and hour='19';

select id,url,guid from yhd_part where date='20150828' and hour='18';
select id,url,guid from yhd_part where date='20150828' and hour='19';


动态分区:
向动态分区表插入数据不需要像普通分区表一样一个分区一个分区的手动插入。只要


-》表示是否开启动态分区

  hive.exec.dynamic.partition
  true
  Whether or not to allow dynamic partitions in DML/DDL.
-》表示动态分区最大个数

  hive.exec.max.dynamic.partitions
  1000
  Maximum number of dynamic partitions allowed to be created in total.
-》每个节点上支持动态分区的个数

  hive.exec.max.dynamic.partitions.pernode
  100
  Maximum number of dynamic partitions allowed to be created in each mapper/reducer node.
-》使用动态分区,需要改变模式为非严格模式

  hive.exec.dynamic.partition.mode
  strict
  In strict mode, the user must specify at least one static partition in case the user accidentally overwrites all partitions.
-》set设置:
set hive.exec.dynamic.partition.mode=nonstrict;
create table yhd_part2(
id string,
url string,
guid string
)partitioned by (date string,hour string)
row format delimited fields terminated by '\t';
-》固定写死的格式
insert into table yhd_part partition(date='20150828',hour='18')
select id,url,guid from yhd_qingxi where date='28' and hour='18';
-》动态分区(非常灵活)
insert into table yhd_part2 partition (date,hour) select * from yhd_qingxi;
select id,url,guid from yhd_part2 where date='28' and hour='18';


3.  数据分析

PV:

select date,hour,count(url) pv from yhd_part group by date,hour;

结果:

+-----------+-------+--------+--+
|   date    | hour  |   pv   |
+-----------+-------+--------+--+
| 20150828  | 18    | 64972  |
| 20150828  | 19    | 61162  |
+-----------+-------+--------+--+

UV:

select date, hour, count(distinct(guid)) uv from yhd_part group by date,hour;

结果:

+-----------+-------+--------+--+
|   date    | hour  |   uv   |
+-----------+-------+--------+--+
| 20150828  | 18    | 23938  |
| 20150828  | 19    | 22330  |
+-----------+-------+--------+--+

最中的结果导入到结果表中:

create table result as select date,hour,count(url) uv, count(distinct(guid)) pv from yhd_part;


4.数据导出:

将最终结果导入到MySQL中:

在MySQL里创建表:

create table save(

date varchar(30),

hour varchar(30),

pv varchar(30),

uv varchar(30),

primary key(date,hour)

);


sqoop方式:

hive=> mysql

bin/sqoop export \

--connect jdbc:mysql://node-1:3306/sqoop/  \

--username root \

--password 123456 \

--table save \

--export-dir /user/hive/warehouse/track_log.db/result/ \

--m1 \

--input-fields-terminate-by "\001"

因为创建result表是通过create as select语句

案例二

Hive案例---日志数据文件分析_第3张图片

会话信息表

Hive案例---日志数据文件分析_第4张图片

数据字典表

Hive案例---日志数据文件分析_第5张图片

流程:
-》需求分析(业务性)
-》数据采集(采集的框架和平台处理框架)
-》数据清洗(处理的手段)
-》数据分析(分析的逻辑)
-》结果展示(数据可视化)

1、需求分析
日期:可以根据最后统计分析的时候根据日期进行分组,可以建立分区表
pv:count(url)
uv:count(distinct(guid))
登陆访客:user_id有值,会员,有账号登陆
游客:user_id 无值,非登陆人员
平均访问时长:每个用户登陆都会产生一个session,统计session平均的停留时间
    -》进入页面第一条时间戳,最后离开页面的最后一条时间戳
二跳率:一个用户在一个session会话中,点击的页面大于等于的会话就是二跳率
    -》求访问页面超过2个的用户,联想到PV
    -》统计PV大于等于2的用户再除以总的人数
独立ip:统计ip去重(公网ip)

2、数据采集
创建数据库
create database yhd_log;
创建源表
create table yhd_source(
id                                 string,
url                                string,
referer                            string,
keyword                            string,
type                               string,
guid                               string,
pageId                             string,
moduleId                           string,
linkId                             string,
attachedInfo                       string,
sessionId                          string,
trackerU                           string,
trackerType                        string,
ip                                 string,
trackerSrc                         string,
cookie                             string,
orderCode                          string,
trackTime                          string,
endUserId                          string,
firstLink                          string,
sessionViewNo                      string,
productId                          string,
curMerchantId                      string,
provinceId                         string,
cityId                             string,
fee                                string,
edmActivity                        string,
edmEmail                           string,
edmJobId                           string,
ieVersion                          string,
platform                           string,
internalKeyword                    string,
resultSum                          string,
currentPage                        string,
linkPosition                       string,
buttonPosition                     string
)
partitioned by(date string)
row format delimited fields terminated by '\t';
load data local inpath '/opt/datas/2015082818' into table yhd_source partition(date='2015082818');


3、数据清洗
trackerU访问渠道:通过什么方式进入到网站
 -》收藏夹
 -》手输网站
 -》论坛、博客
    。。。
 -》需要获取第一个记录
 作用:可以通过访问的渠道,加大投放力度,去宣传
-》着陆页面
 -》用户进入网站的第一个页面
 -》分析同一个session会话中的第一个页面
 -》需要获取第一个记录
-》着陆页面之前的地址
 -》需要获取第一个记录
stay_time停留时间:可以先考虑求出每一个session的停留时间,再按照session的个数求平均值
min_trackTime最小时间:进入第一个页面的时间戳,后面的时间是增加的

-》创建会话信息表
create table session_info(
session_id string ,
guid string ,
trackerU string ,
landing_url string ,
landing_url_ref string ,
user_id string ,
pv string ,
stay_time string ,
min_trackTime string ,
ip string ,
provinceId string
)
partitioned by (date string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' ;


-》加载数据:数据来源于源表
-》针对每个会话来说要进行一个 group by sessionId
-》按照sessionId进行分组之后可能会得到多条记录
-》由于session进行分组,那么就是对于每个session里面统计PV

对sessionID进行group by之后,session_id,guid,user_id,pv,stay_time,min_trackTime,ip,provinceId都可以通过聚合函数得到!!但是trackerU,landing_url, landing_url_ref 有多个,我们无法通过聚合函数得到最早时间的值,所以我们可以考虑通过两个临时表做join,通过第一张表的sessionID,min_trackTime 与第二张表的sessionID,trackTime相等作为判据,就会得到我们想要的trackerU,landing_url, landing_url_ref

-》创建临时表(1)
create table session_tmp as
select
sessionId session_id,
max(guid) guid,
max(endUserId) user_id,
count(distinct url) pv,
(unix_timestamp(max(trackTime))-unix_timestamp(min(trackTime))) stay_time,
min(trackTime) min_trackTime,
max(ip) ip,
max(provinceId) provinceId
from yhd_source where date='2015082818'
group by sessionId;


-》从源表中获取每一条记录的trackerU、landing_url、landing_url_ref
-》从源表中获取每一条记录的时间
-》然后进行最小时间与源表中最小时间的join,获取trackerU、landing_url、landing_url_ref
-》创建第二张临时表(2)
-》这张表不需要group by
-》从源表中的每一条记录中获取字段
create table track_tmp as
select
sessionId session_id,
trackTime trackTime,
url landing_url,
referer landing_url_ref,
trackerU trackerU
from yhd_source
where date='2015082818';


-》join
insert overwrite table session_info partition(date='2015082818')
select
a.session_id session_id,
max(a.guid) guid,
max(b.trackerU) trackerU,
max(b.landing_url) landing_url,
max(b.landing_url_ref) landing_url_ref,
max(a.user_id) user_id,
max(a.pv) pv,
max(a.stay_time) stay_time,
max(a.min_trackTime) min_trackTime,
max(a.ip) ip,
max(a.provinceId) provinceId
from session_tmp a join track_tmp b on
a.session_id=b.session_id and a.min_trackTime=b.trackTime
group by a.session_id;

-》数据分析
create table result as
select
date date,
sum(pv) PV,
count(distinct guid) UV,
count(distinct case when user_id is not null then guid else null end) login_user,
count(distinct case when user_id is null then guid else null end) visitor,
avg(stay_time) avg_time,
(count(case when pv>=2 then session_id else null end)/count(session_id)) session_jump,
count(distinct ip) IP
from session_info
where date='2015082818'
group by date;
-》错误的结果:
日期                    PV          UV        登陆人员   游客   平均访问时长                    二跳率                               ip数
2015082818      36420.0  23928    23928      0        49.74171774059963       0.25886201755838995     19174

create table result2 as
select
date date,
sum(pv) PV,
count(distinct guid) UV,
count(distinct case when length(user_id)!=0 then guid else null end) login_user,
count(distinct case when length(user_id)=0 then guid else null end) visitor,
avg(stay_time) avg_time,
(count(case when pv>=2 then session_id else null end)/count(session_id)) session_jump,
count(distinct ip) IP
from session_info
where date='2015082818'
group by date;

日期                  PV          UV         登陆人员   游客      平均访问时长                   二跳率                                ip数
2015082818    36420.0  23928    11586      12367    49.74171774059963       0.25886201755838995     19174


你可能感兴趣的:(Hive案例---日志数据文件分析)