项目开发python----数据预处理模块

预处理必要性

在将数据放入到模型中训练之前,数据通常是很脏的,可能存在缺失、数据类型不统一、存在异常值、需要标准化处理等。

一般来说,预处理包括数据填充、数据标准化、特征编码、数据离散化等步骤。特别注意,在这些工作之前,你需要了解你的数据集哪些特征是数值或者分类变量,了解哪个特征存在缺失。

数据:https://github.com/yushiyin/handson-ml/tree/master/datasets/housing

import os
import tarfile
from six.moves import urllib
import pandas as pd
housing =pd.read_csv("./housing.csv")
housing.head()

准备工作:

housing.info()      ##变量类型
housing["ocean_proximity"].value_counts()  ##分类变量频数统计
####哪个样本存在缺失
housing[housing.isnull().any(axis=1)].head()
####哪个位置存在缺失
housing.isnull()
####哪个特征存在缺失
housing.isnull().any()

正式进入工作,注意下面的处理过程均是利用训练集进行。

数据转换模块(dataframe----array):

##输入对应的属性(数值或分类)index或者name
from sklearn.base import BaseEstimator, TransformerMixin
    # Create a class to select numerical or categorical columns 
    # since Scikit-Learn doesn't handle DataFrames yet
    class DataFrameSelector(BaseEstimator, TransformerMixin):
         def __init__(self, attribute_names):
            self.attribute_names = attribute_names
        def fit(self, X, y=None):
            return self
        def transform(self, X):
            return X[self.attribute_names].values

数据填充模块:

##利用中位数填充
from sklearn.preprocessing import Imputer
imputer = Imputer(strategy="median")  ##还有mean  most_frequent
imputer.fit(housing_num)
imputer.statistics_
X=imputer.transform(housing_num)  ##需要注意输出的结果是一个数组
housing_tr = pd.DataFrame(X, columns=housing_num.columns, 
                     index = list(housing.index.values))   

合并特征形成行的特征:

from sklearn.base import BaseEstimator, TransformerMixin
# column index
rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6
class CombinedAttributesAdder(BaseEstimator,TransformerMixin):
    def __init__(self, add_bedrooms_per_room = True): # no *args or **kargs
        self.add_bedrooms_per_room = add_bedrooms_per_room
    def fit(self, X, y=None):
        return self  # nothing else to do
    def transform(self, X, y=None):
        rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
        population_per_household = X[:, population_ix] / X[:, household_ix]
        if self.add_bedrooms_per_room:
            bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
            return np.c_[X, rooms_per_household, population_per_household,
                         bedrooms_per_room]
        else:
            return np.c_[X, rooms_per_household, population_per_household]
            
attr_adder = CombinedAttributesAdder()
housing_extra_attribs = attr_adder.transform(X)
housing_extra_attribs.shape

数据标准化模块:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(housing_extra_attribs)
std_housing=scaler.transform(housing_extra_attribs)

数据编码模块:

###编译为整数值
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
housing_cat = housing["ocean_proximity"]
housing_cat_labelencoded = encoder.fit_transform(housing_cat)
housing_cat_labelencoded[0:10]

结果:array([0, 0, 4, 1, 0], dtype=int64)

####编译为热值向量,最常用,需要注意的是需要先进行LabelEncoder再reshape
    from sklearn.preprocessing import OneHotEncoder
    encoder = OneHotEncoder()
    housing_cat_1hot = encoder.fit_transform(housing_cat_labelencoded.reshape(-1,1))
    print(housing_cat_labelencoded[0:5])
    print(housing_cat_labelencoded.reshape(-1,1)[0:5])
    print(housing_cat_1hot.toarray()[0:5,])

结果:[0 0 4 1 0]
[[0]
 [0]
 [4]
 [1]
 [0]]
[[ 1.  0.  0.  0.  0.]
 [ 1.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  1.]
 [ 0.  1.  0.  0.  0.]
 [ 1.  0.  0.  0.  0.]]

汇总一个编码class,直接使用即可:

# Definition of the CategoricalEncoder class, copied from PR #9151.
# Just run this cell, or copy it to your code, do not try to understand it (yet).
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils import check_array
from sklearn.preprocessing import LabelEncoder
from scipy import sparse

class CategoricalEncoder(BaseEstimator, TransformerMixin):
    """Encode categorical features as a numeric array.
    The input to this transformer should be a matrix of integers or strings,
    denoting the values taken on by categorical (discrete) features.
    The features can be encoded using a one-hot aka one-of-K scheme
    (``encoding='onehot'``, the default) or converted to ordinal integers
    (``encoding='ordinal'``).
    This encoding is needed for feeding categorical data to many scikit-learn
    estimators, notably linear models and SVMs with the standard kernels.
    Read more in the :ref:`User Guide `.
    Parameters
    ----------
    encoding : str, 'onehot', 'onehot-dense' or 'ordinal'
        The type of encoding to use (default is 'onehot'):
        - 'onehot': encode the features using a one-hot aka one-of-K scheme
          (or also called 'dummy' encoding). This creates a binary column for
          each category and returns a sparse matrix.
        - 'onehot-dense': the same as 'onehot' but returns a dense array
          instead of a sparse matrix.
        - 'ordinal': encode the features as ordinal integers. This results in
          a single column of integers (0 to n_categories - 1) per feature.
    categories : 'auto' or a list of lists/arrays of values.
        Categories (unique values) per feature:
        - 'auto' : Determine categories automatically from the training data.
        - list : ``categories[i]`` holds the categories expected in the ith
          column. The passed categories are sorted before encoding the data
          (used categories can be found in the ``categories_`` attribute).
    dtype : number type, default np.float64
        Desired dtype of output.
    handle_unknown : 'error' (default) or 'ignore'
        Whether to raise an error or ignore if a unknown categorical feature is
        present during transform (default is to raise). When this is parameter
        is set to 'ignore' and an unknown category is encountered during
        transform, the resulting one-hot encoded columns for this feature
        will be all zeros.
        Ignoring unknown categories is not supported for
        ``encoding='ordinal'``.
    Attributes
    ----------
    categories_ : list of arrays
        The categories of each feature determined during fitting. When
        categories were specified manually, this holds the sorted categories
        (in order corresponding with output of `transform`).
    Examples
    --------
    Given a dataset with three features and two samples, we let the encoder
    find the maximum value per feature and transform the data to a binary
    one-hot encoding.
    >>> from sklearn.preprocessing import CategoricalEncoder
    >>> enc = CategoricalEncoder(handle_unknown='ignore')
    >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
    ... # doctest: +ELLIPSIS
    CategoricalEncoder(categories='auto', dtype=<... 'numpy.float64'>,
              encoding='onehot', handle_unknown='ignore')
    >>> enc.transform([[0, 1, 1], [1, 0, 4]]).toarray()
    array([[ 1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.],
           [ 0.,  1.,  1.,  0.,  0.,  0.,  0.,  0.,  0.]])
    See also
    --------
    sklearn.preprocessing.OneHotEncoder : performs a one-hot encoding of
      integer ordinal features. The ``OneHotEncoder assumes`` that input
      features take on values in the range ``[0, max(feature)]`` instead of
      using the unique values.
    sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of
      dictionary items (also handles string-valued features).
    sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot
      encoding of dictionary items or strings.
    """
    def __init__(self, encoding='onehot', categories='auto', dtype=np.float64,
                 handle_unknown='error'):
        self.encoding = encoding
        self.categories = categories
        self.dtype = dtype
        self.handle_unknown = handle_unknown

    def fit(self, X, y=None):
        """Fit the CategoricalEncoder to X.
        Parameters
        ----------
        X : array-like, shape [n_samples, n_feature]
            The data to determine the categories of each feature.
        Returns
        -------
        self
        """
        if self.encoding not in ['onehot', 'onehot-dense', 'ordinal']:
            template = ("encoding should be either 'onehot', 'onehot-dense' "
                        "or 'ordinal', got %s")
            raise ValueError(template % self.handle_unknown)

        if self.handle_unknown not in ['error', 'ignore']:
            template = ("handle_unknown should be either 'error' or "
                        "'ignore', got %s")
            raise ValueError(template % self.handle_unknown)

        if self.encoding == 'ordinal' and self.handle_unknown == 'ignore':
            raise ValueError("handle_unknown='ignore' is not supported for"
                             " encoding='ordinal'")

        X = check_array(X, dtype=np.object, accept_sparse='csc', copy=True)
        n_samples, n_features = X.shape
        self._label_encoders_ = [LabelEncoder() for _ in range(n_features)]

        for i in range(n_features):
            le = self._label_encoders_[i]
            Xi = X[:, i]
            if self.categories == 'auto':
                le.fit(Xi)
            else:
                valid_mask = np.in1d(Xi, self.categories[i])
                if not np.all(valid_mask):
                    if self.handle_unknown == 'error':
                        diff = np.unique(Xi[~valid_mask])
                        msg = ("Found unknown categories {0} in column {1}"
                               " during fit".format(diff, i))
                        raise ValueError(msg)
                le.classes_ = np.array(np.sort(self.categories[i]))

        self.categories_ = [le.classes_ for le in self._label_encoders_]
        return self

    def transform(self, X):
        """Transform X using one-hot encoding.
        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            The data to encode.
        Returns
        -------
        X_out : sparse matrix or a 2-d array
            Transformed input.
        """
        X = check_array(X, accept_sparse='csc', dtype=np.object, copy=True)
        n_samples, n_features = X.shape
        X_int = np.zeros_like(X, dtype=np.int)
        X_mask = np.ones_like(X, dtype=np.bool)

        for i in range(n_features):
            valid_mask = np.in1d(X[:, i], self.categories_[i])
            if not np.all(valid_mask):
                if self.handle_unknown == 'error':
                    diff = np.unique(X[~valid_mask, i])
                    msg = ("Found unknown categories {0} in column {1}"
                           " during transform".format(diff, i))
                    raise ValueError(msg)
                else:
                    # Set the problematic rows to an acceptable value and
                    # continue `The rows are marked `X_mask` and will be
                    # removed later.
                    X_mask[:, i] = valid_mask
                    X[:, i][~valid_mask] = self.categories_[i][0]
            X_int[:, i] = self._label_encoders_[i].transform(X[:, i])

        if self.encoding == 'ordinal':
            return X_int.astype(self.dtype, copy=False)

        mask = X_mask.ravel()
        n_values = [cats.shape[0] for cats in self.categories_]
        n_values = np.array([0] + n_values)
        indices = np.cumsum(n_values)

        column_indices = (X_int + indices[:-1]).ravel()[mask]
        row_indices = np.repeat(np.arange(n_samples, dtype=np.int32),
                                n_features)[mask]
        data = np.ones(n_samples * n_features)[mask]

        out = sparse.csc_matrix((data, (row_indices, column_indices)),
                                shape=(n_samples, indices[-1]),
                                dtype=self.dtype).tocsr()
        if self.encoding == 'onehot-dense':
            return out.toarray()
        else:
            return out

使用该class,如下:

#from sklearn.preprocessing import CategoricalEncoder # in future versions of Scikit-Learn
cat_encoder = CategoricalEncoder(encoding="onehot-dense")
housing_cat_reshaped = housing_cat.values.reshape(-1, 1)
housing_cat_1hot = cat_encoder.fit_transform(housing_cat_reshaped)
print(housing_cat_1hot[0:5,])
print(housing_cat_reshaped[0:5,])
print(housing_cat.values[0:5])

结果:[[ 1.  0.  0.  0.  0.]
 [ 1.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  1.]
 [ 0.  1.  0.  0.  0.]
 [ 1.  0.  0.  0.  0.]]
[['<1H OCEAN']
 ['<1H OCEAN']
 ['NEAR OCEAN']
 ['INLAND']
 ['<1H OCEAN']]
['<1H OCEAN' '<1H OCEAN' 'NEAR OCEAN' 'INLAND' '<1H OCEAN']

经过上面的定义一些class或者sklearn中含有的class,我们可以利用一个pipeline整合所有的这些步骤:

 num_attribs = list(housing_num)  #数值变量name
    cat_attribs = ["ocean_proximity"]  #分类变量name
    
    from sklearn.pipeline import Pipeline
    num_pipeline = Pipeline([
            ('selector', DataFrameSelector(num_attribs)),
            ('imputer', Imputer(strategy="median")),
            ('attribs_adder', CombinedAttributesAdder()),
            ('std_scaler', StandardScaler()),
        ])
    cat_pipeline = Pipeline([
            ('selector', DataFrameSelector(cat_attribs)),
            ('cat_encoder', CategoricalEncoder(encoding="onehot-dense")),
        ])
#num_pipeline:所有的数值变量的预处理过程
#cat_pipeline:所有的分类变量的预处理过程

但是我们需要将这个数据合并起来,才能得到所有预处理数据,Scikit-Learn提供了一个类FeatureUnion实现这个功能。你给它一列转换量(可以是所有的转换量),当调用它的transform()方法,每个转换量的transform()会被并行执行,等待输出,然后将输出合并起来,并返回结果。

from sklearn.pipeline import FeatureUnion
full_pipeline = FeatureUnion(transformer_list=[
        ("num_pipeline", num_pipeline),
        ("cat_pipeline", cat_pipeline),
    ])

对整个测试集进行预处理为:

housing_prepared = full_pipeline.fit_transform(housing)
housing_prepared

延伸学习:
这里面需要理解pipeline的工作原理以及BaseEstimator, TransformerMixin的作用。
参考:
1、https://blog.csdn.net/weixin_33845477/article/details/87116104
2、http://sklearn.apachecn.org/#/docs/57

你可能感兴趣的:(项目开发模块)