- LLM论文笔记 20: How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning
Zhouqi_Hua
大模型论文阅读人工智能chatgpt论文阅读机器学习深度学习语言模型
Arxiv日期:2024.5.16机构:IIT关键词CoT本质LLM推理本质核心结论1.CoT推理的功能组件尽管不同阶段的推理任务具有不同的推理需求,模型内部的功能组件几乎是相同的(共享而非独享)不同的神经算法实际上是由类似归纳头(inductionheads)等机制组合而成2.注意力机制中的信息流动attentionheads在不同的模型层之间传递信息,特别是当它们涉及到本体论相关(ontolo
- [论文笔记] LLaMA3.1与Qwen2与Apple 技术报告中预训练方案对比
心心喵
论文笔记论文阅读深度学习人工智能
https://arxiv.org/pdf/2407.21075https://arxiv.org/pdf/2407.10671https://arxiv.org/pdf/2407.21783LLaMA3.1LLaMA3.1技术报告:https://ai.meta.com/blog/meta-llama-3-1/
- LLM时代的小模型思考:《What is the Role of Small Models in the LLM Era: A Survey》论文笔记
FrancisQiu
learningnlppaperreading论文阅读
论文:WhatistheRoleofSmallModelsintheLLMEra:ASurvey作者:LihuChenetal.单位:ImperialCollegeLondonAbstract问题:扩大模型大小会导致计算成本和能耗呈指数级增长,这使得这些模型对于学术研究人员和资源有限的企业来说不切实际小型模型(SMs)经常用于实际环境中,引发了关于小模型在LLM时代的作用的重要问题,且关注有限方法
- 【论文笔记】3DGS压缩相关工作2篇
AndrewHZ
深度学习新浪潮论文阅读3DGS计算机图形学算法三维高斯飞溅压缩方法
1.背景介绍:NVS神经辐射场(NeRFs)引入了一种基于多层感知机(MLP)的新型隐式场景表示方法,它将体密度编码作为几何形状和方向辐射的代理量。渲染通过光线行进的方式来执行。这一解决方案为新视图合成(NVS)带来了前所未有的视觉质量,但代价是训练多层感知机的优化过程极为耗时,且渲染速度很慢。有几种方法加速了训练和渲染过程,通常是利用空间数据结构或者像哈希这样的编码方式,不过牺牲了视觉质量。近期
- [论文笔记] LLM大模型剪枝篇——2、剪枝总体方案
心心喵
论文笔记剪枝算法机器学习
https://github.com/sramshetty/ShortGPT/tree/mainMy剪枝方案(暂定):剪枝目标:1.5B—>100~600M剪枝方法:层粒度剪枝1、基于BI分数选择P%的冗余层,P=60~802、对前N%冗余层,直接删除fulllayer。N=20(N:剪枝崩溃临界点,LLaMA2在45%,Mistral-7B在35%,Qwen在20%,Phi-2在25%)对后(P
- Farm3D- Learning Articulated 3D Animals by Distilling 2D Diffusion论文笔记
Im Bug
3d论文阅读
Farm3D:LearningArticulated3DAnimalsbyDistilling2DDiffusion1.Introduction最近的研究DreamFusion表明,可以通过text-imagegenerator提取高质量的三维模型,尽管该生成模型并未经过三维训练,但它仍然包含足够的信息以恢复三维形状。在本文中,展示了通过文本-图像生成模型可以获取更多信息,并获得关节模型化的三维对
- 论文笔记(七十二)Reward Centering(一)
墨绿色的摆渡人
文章论文阅读
RewardCentering(一)文章概括摘要1奖励中心化理论文章概括引用:@article{naik2024reward,title={RewardCentering},author={Naik,AbhishekandWan,YiandTomar,MananandSutton,RichardS},journal={arXivpreprintarXiv:2405.09999},year={202
- 论文笔记:Enhancing Sentence Embeddings in Generative Language Models
UQI-LIUWJ
论文阅读语言模型人工智能
2024ICIC1INTRO对于文本嵌入,过去几年的相关研究主要集中在像BERT和RoBERTa这样的判别模型上。这些模型固有的语义空间各向异性,往往需要通过大量数据集进行微调,才能生成高质量的句子嵌入。——>需要较大的训练批次,这会消耗大量的计算资源一些前沿的工作将焦点转向了最近开发的生成模型,期望利用其先进的文本理解能力,直接对输入句子进行编码,而无需额外的反向传播由于句子表示和自回归语言建模
- LLM论文笔记 15: Transformers Can Achieve Length Generalization But Not Robustly
Zhouqi_Hua
大模型论文阅读论文阅读语言模型自然语言处理深度学习笔记
Arxiv日期:2024.2.14机构:GoogleDeepMind/UniversityofToronto关键词长度泛化位置编码数据格式核心结论1.实验结论:十进制加法任务上的长度泛化最佳组合:FIRE位置编码随机化位置编码反向数据格式索引提示(indexhints,辅助定位)2.在适当的配置下,Transformer模型可以泛化到训练序列长度的2.5倍(例如从40位加法训练成功泛化到100位加
- 多模态论文笔记——DiT(Diffusion Transformer)
好评笔记
多模态论文笔记深度学习transformerDiT人工智能机器学习aigcstablediffusion
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Transformer架构图像生成方面的应用,将Diffusion和Transformer结合起来的模型:DiT。目前DiT已经成为了AIGC时代的新宠儿,视频和图像生成不可缺少的一部分。文章目录论文定义架构与传统(U-Net)扩散模型区别架构噪声调度策略与传统扩散的相同输入图像/条件信息的Patch化(Pat
- LLM论文笔记 14: The Impact of Positional Encoding on Length Generalization in Transformers
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2023.12.15机构:McGillUniversity/IBM/Facebook/ServiceNow关键词长度泛化位置编码CoT核心结论1.decoder-only中不显式使用位置编码(NoPE)可以提高长度泛化性能2.(证明了)decoder-onlytransformer如果NoPE同时具备绝对APE和RPE的能力3.暂存器(cot)对于长度泛化和任务相关,同时关注短期和
- LLM论文笔记 9: Neural Networks and the Chomsky Hierarchy
Zhouqi_Hua
大模型论文阅读论文阅读人工智能深度学习笔记语言模型
Arxiv日期:2022.9.29机构:GoogleDeepMind/Stanford关键词transformer架构原理乔姆斯基体系长度泛化核心结论1.虽然Transformer理论上具有图灵完备性,但在实践中能力受到位置不变性和有限记忆的限制2.Transformer在一些任务中表现较差,例如正则语言任务(如ParityCheck),表明其与Chomsky层级的对齐性不佳3.Transform
- [论文笔记] Cost-Effective Hyperparameter Optimization for Large Language Model Generation 大型语言模型生成推理超参优化
心心喵
论文笔记论文阅读语言模型人工智能
成本效益高的大型语言模型生成推理的超参数优化https://openreview.net/pdf?id=DoGmh8A39OChiWang1,SusanXueqingLiu2,AhmedH.Awadallah11微软研究院,雷德蒙德2史蒂文斯理工学院摘要大型语言模型(LLMs)因其生成能力引发了广泛关注,催生了各种商业应用。使用这些模型的高成本驱使应用构建者在有限的推理预算下最大化生成的价值。本文
- 【deepseek】论文笔记--DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
大表哥汽车人
人工智能大语言模型学习笔记论文阅读人工智能deepseek
DeepSeek-R1论文解析1.论文基本信息标题:DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning作者:DeepSeek-AI团队(联系邮箱:research@deepseek.com)发表时间与出处:2024年,AIME2024(人工智能与数学教育国际会议)关键词:ReinforcementLe
- 论文笔记《基于深度学习模型的药物-靶标结合亲和力预测》
I_dyllic
深度学习论文阅读深度学习人工智能
基于深度学习模型的药物-靶标结合亲和力预测这是一篇二区的文章,算是一个综述,记录一下在阅读过程中遇到的问题。文章目录基于深度学习模型的药物-靶标结合亲和力预测前言一、蛋白质接触图谱二、为什么蛋白质图谱的准确性对DTA模型预测结果没有影响1.对这段话的解释2.关于Alphafold3三、随机配体与随机配体节点属性(配体一般指药物)1.什么是随机配体与配体节点属性四、关于深度学习模型对特征的自动学习过
- TC-LLaVA论文笔记
0yumiwawa0
计算机视觉论文阅读
RoPE介绍理解LLM位置编码:RoPE|LinsightMotivation在基于视频的multimodallargelanguagemodel中,更好地利用视频提供的时序信息。MethodTemporal-AwareDualRoPE之前的RoPE公式:A(qTm,kFnVz)=Re[qTmkFnVzei(P(Tm)−P(FnVz))θ]A_{(q_{T_m},k_{F_nV_z})}=Re[q
- CNN-day5-经典神经网络LeNets5
谢眠
深度学习深度学习计算机视觉人工智能
经典神经网络-LeNets51998年YannLeCun等提出的第一个用于手写数字识别问题并产生实际商业(邮政行业)价值的卷积神经网络参考:论文笔记:Gradient-BasedLearningAppliedtoDocumentRecognition-CSDN博客1网络模型结构整体结构解读:输入图像:32×32×1三个卷积层:C1:输入图片32×32,6个5×5卷积核,输出特征图大小28×28(3
- [论文笔记] llama3.2 蒸馏
心心喵
论文笔记论文阅读
参考链接:LLaMA3.2技术报告:GitHub-meta-llama/llama-stack:ModelcomponentsoftheLlamaStackAPIs[2407.21783]TheLlama3HerdofModelshttps://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/HuggingFac
- [论文笔记] Deepseek技术报告
心心喵
论文笔记论文阅读人工智能
1.总体概述背景与目标报告聚焦于利用强化学习(RL)提升大型语言模型(LLMs)的推理能力,旨在探索在不依赖大规模监督微调(SFT)的情况下,模型如何自我进化并形成强大的推理能力。介绍了两代模型:DeepSeek-R1-Zero(纯RL,无SFT冷启动数据)和DeepSeek-R1(在RL前加入少量冷启动数据和多阶段训练流程,提升可读性及推理表现)。核心思路直接在基础模型上应用大规模强化学习,利用
- 【论文笔记】基于图神经网络的多视角视觉重定位 GRNet CVPR 2020 论文笔记
phy12321
相机重定位
GRNet:LearningMulti-viewCameraRelocalizationwithGraphNeuralNetworks驭势科技,北京大学机器感知重点实验室,北京长城航空测控技术研究所本文提出了一种使用多视角图像进行相机重定位的图神经网络。该网络可以使得不连续帧之间进行信息传递,相比于只能在相邻前后帧之间进行信息传递的序列输入和LTSM,其能捕获更多视角信息以进行重定位。因此LSTM
- 论文笔记(七十)DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning(二)
墨绿色的摆渡人
文章论文阅读
DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning(二)文章概括摘要:2.方法2.3.DeepSeek-R1:冷启动强化学习2.3.1.冷启动2.3.2.面向推理的强化学习2.3.3.拒绝采样与监督微调2.3.4.面向所有场景的强化学习2.4.蒸馏:赋予小模型推理能力文章概括引用:@article{g
- [论文总结] 深度学习在农业领域应用论文笔记14
落痕的寒假
论文总结深度学习论文阅读人工智能
当下,深度学习在农业领域的研究热度持续攀升,相关论文发表量呈现出迅猛增长的态势。但繁荣背后,质量却不尽人意。相当一部分论文内容空洞无物,缺乏能够落地转化的实际价值,“凑数”的痕迹十分明显。在农业信息化领域的顶刊《ComputersandElectronicsinAgriculture》中也大面积存在。众多论文在研究方法上存在严重缺陷,过于简单粗放。只是机械地把深度学习方法生硬地套用到特定农业问题中
- [论文笔记] llama-factory 微调qwen2.5、llama3踩坑
心心喵
论文笔记深度学习人工智能
一、bug1、pre-tokenize的时候,会OOM解决:在yaml文件中添加streaming参数#tokenizestreaming:Truemax_steps:10000https://github.com/hiyouga/LLaMA-Factory/blob/3a023bca2a502810a436cfba7708df164754ea62/src/llamafactory/hparams
- [论文笔记] Megatron: mistral sliding window(ImportError: /workspace/venv/lib/python3.10/site-packag报错解决)
心心喵
论文笔记论文阅读
pyTorch—TransformerEngine1.2.1documentation论文:https://arxiv.org/pdf/2310.06825.pdftransformerengine的slidingwindow是用了flashatttention(新版本2以上,这里用的最新版本2.5.2)里对sliding_window的实现。所以不需要用transformerengine。直接用
- [论文笔记]自监督sketch-to-image生成:Self-Supervised Sketch-to-Image Synthesis
沉迷单车的追风少年
深度学习-计算机视觉sketch深度学习计算机视觉
前言:2020年顶会同时出现了两篇很有意思的论文《Self-SupervisedSketch-to-ImageSynthesis》和《UnsupervisedSketch-to-PhotoSynthesis》,分别用自监督和无监督的方法做sketch-to-image生成,可以说是GANs在这一任务中表现的巅峰。目录主要贡献主要工作域转换模型TOMPS:边缘图、铅笔画图、草图sketch之间的区别
- 【论文笔记】:DuBox: No-Prior Box Objection Detection via Residual Dual Scale Detectors
Activewaste
#Anchor-free#特征层面#小目标检测DuBoxanchor-free
&Title:DuBox:No-PriorBoxObjectionDetectionviaResidualDualScaleDetectorsGithubaddrNone&Summary介绍了一种新的一阶段检测方法Dubox,它可以在没有先验框的情况下检测物体。设计的双尺度残差单元具有多尺度特性,使双尺度检测器不再独立运行。高层检测器学习低层检测器的残差。Dubox增强了启发式引导的能力,进一步使
- 【论文笔记】AutoML: A survey of the state-of-the-art(下篇)
pip install USART
学习笔记论文阅读记录论文阅读算法深度学习
目录4.ModelGeneration模型生成4.1SearchSpace搜索空间4.1.1Entire-structuredsearchspace基于整个架构的4.1.2Cell-basedsearchspace基于Cell的空间4.1.3Hierarchicalsearchspace层次化的空间4.1.3Morphism-basedsearchspace基于“态射”的空间4.2网络优化方法(搜
- 论文笔记 U-Net: Convolutional Networks for Biomedical Image Segmentation
城南皮卡丘
#深度学习caffe人工智能
摘要:人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,该策略依赖于大量使用数据增强来更有效地使用可用的注释样本。该体系结构包括用于捕获上下文的收缩路径和用于实现精确定位的对称扩展路径。我们表明,这样的网络可以从很少的图像进行端到端训练,并且在ISBI挑战中优于先前的最佳方法(滑动窗口卷积网络),用于分割电子显微堆栈中的神经元结构。使用在透射光显微
- AIGC视频生成模型:Meta的Emu Video模型
好评笔记
#MetaAIGC-视频AIGC机器学习人工智能transformer论文阅读深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型EmuVideo,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言相关工作文本到图像(T2I)扩散模型视频生成/预测文本到视频(T2V)生成分解生成方法预备知识EmuVideo生成步骤图
- AIGC视频生成国产之光:ByteDance的PixelDance模型
好评笔记
AIGC-视频补档AIGC计算机视觉人工智能深度学习机器学习论文阅读面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言输入训练和推理时的数据处理总结相关工作视频生成长视频生成方法模型架构
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,