import cv2
# This is a demo of running face recognition on a video file and saving the results to a new video file.
#
# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
# Open the input movie file
input_movie = cv2.VideoCapture("D:/work_test/object_predict.avi")
length = int(input_movie.get(cv2.CAP_PROP_FRAME_COUNT))
pre_file = '12_28_62_'
f_index = 0
while True:
# Grab a single frame of video
ret, frame = input_movie.read()
# Quit when the input video file ends
if not ret:
break
frame_resize = cv2.resize(frame, (640, 360), interpolation=cv2.INTER_AREA)
# Write the resulting image to the output video file
#print("Writing frame {} / {}".format(frame_number, length))
cv2.imwrite("D:/work_test/op/"+pre_file+str(f_index)+".jpg", frame_resize)
f_index += 1
# All done!
input_movie.release()
cv2.destroyAllWindows()
都文件avi和mp4没有任何区别,这里就不多说
读完的文件保存到一个目录下面
import os
import cv2
# This is a demo of running face recognition on a video file and saving the results to a new video file.
#
# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
length = 30
# Create an output movie file (make sure resolution/frame rate matches input video!)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
output_movie = cv2.VideoWriter('output2_8.avi', fourcc, length, (1920, 1080))
frame_number = 0
file_path = 'D:/work_test/face_recognition-master/examples/2_8/'
for i in range(3127):
# Grab a single frame of video
frame = cv2.imread(file_path+"12_28_62_"+str(i)+".jpg")
frame_number += 1
# Write the resulting image to the output video file
print("Writing frame {} / {}".format(frame_number, length))
output_movie.write(frame)
# All done!
cv2.destroyAllWindows()
将一个目录下面的写到avi目录文件中,我们注意到
fourcc = cv2.VideoWriter_fourcc(*'XVID')
用来指定格式的
opencv3支持的avi格式有
I420: 未压缩YUV颜色编码
PIMI: MPEG-1编码
XVID: MPEG-4编码
import os
import cv2
# This is a demo of running face recognition on a video file and saving the results to a new video file.
#
# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
length = 20
# Create an output movie file (make sure resolution/frame rate matches input video!)
#fourcc = cv2.VideoWriter_fourcc(*'MP4V')
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
output_movie = cv2.VideoWriter('output2_9.mp4', fourcc, length, (640, 360))
frame_number = 0
file_path = 'D:/work_test/face_recognition-master/examples/2_1/'
for i in range(3127):
# Grab a single frame of video
frame = cv2.imread(file_path+"12_28_62_"+str(i)+".jpg")
frame_number += 1
# Write the resulting image to the output video file
print("Writing frame {} / {}".format(frame_number, length))
output_movie.write(frame)
# All done!
cv2.destroyAllWindows()
这里我们看到
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
其实以下三种写法是等价的
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
fourcc = cv2.VideoWriter_fourcc('M', 'P', '4', 'V')
fourcc = cv2.VideoWriter_fourcc(*'MP4V')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
由于mp4对于avi的压缩比比较好,所有常用mp4,这里我们实验的数据是avi 80.7M, mp4是50.4M,效果非常明显