- VLLM:虚拟大型语言模型(Virtual Large Language Model)
大霸王龙
语言模型人工智能自然语言处理
VLLM:虚拟大型语言模型(VirtualLargeLanguageModel)VLLM指的是一种基于云计算的大型语言模型的虚拟实现。它通常是指那些由多个服务器组成的分布式计算环境中的复杂机器学习模型,这些模型能够处理和理解大量的文本数据。VLLM的核心是“大型语言模型”,这是一种通过深度神经网络训练的算法,能够在理解和生成人类语言方面表现出极高的能力。解释:虚拟:意味着这个模型不是在单个物理设备
- 实时解码技术:基于FPGA芯片的即时错误诊断与修正系统,实现计算过程中的动态纠错
百态老人
fpga开发
以下基于资料构建的基于FPGA的实时动态纠错系统技术框架,涵盖原理、实现路径与典型应用:一、FPGA芯片的核心特性支撑实时动态纠错FPGA(现场可编程门阵列)的硬件可重构性和并行架构是动态纠错系统的物理基础:可编程逻辑单元(CLB)与分布式计算:FPGA内部由可配置逻辑块(CLB)和查找表(LUT)构成,支持并行执行多个逻辑运算,为实时错误检测提供硬件级并发能力。计算过程分散在空间分布的基本单元中
- 基于Hadoop大数据分析应用场景与实战
跨过山河大海
一、Hadoop的应用业务分析大数据是不能用传统的计算技术处理的大型数据集的集合。它不是一个单一的技术或工具,而是涉及的业务和技术的许多领域。目前主流的三大分布式计算系统分别为:Hadoop、Spark和Strom:Hadoop当前大数据管理标准之一,运用在当前很多商业应用系统。可以轻松地集成结构化、半结构化甚至非结构化数据集。Spark采用了内存计算。从多迭代批处理出发,允许将数据载入内存作反复
- Java 大视界 -- 基于 Java 的大数据分布式计算在药物临床试验数据分析与质量控制中的创新实践(321)
青云交
Java大视界大数据新视界java大数据Java大数据药物临床试验分布式计算数据质量控制CDISC标准
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!本博客的精华专栏:【大数据新视界】【Java大视界】【智创AI新视界】【Java+Python双剑合璧:AI大数据实战通关秘籍】社区:【青云交技术变现副业福利商
- ComfyUI底层架构大揭秘:从节点工厂到AI艺术流水线
留思难
comfyui人工智能架构
关注不迷路,点赞走好运!三分钟掌握AI绘图引擎核心架构!当节点像乐高积木般拼接,看ComfyUI如何构建AI艺术的生产流水线深度目录开篇类比:汽车工厂与节点流水线核心骨架:模块化节点系统设计⚙️动力引擎:Python异步执行框架神经连接:事件驱动架构剖析加速秘籍:显存优化三大黑科技跨域桥梁:前后端通信协议解密扩展革命:自定义节点开发实战️应用案例:从电商设计到电影特效未来演进:分布式计算与AI协作
- 计算机网络学习:打造体系,接轨前沿技术
xiayan827
计算机网络学习
引言在数字化浪潮席卷全球的当下,计算机网络已然成为推动社会发展、经济增长以及科技创新的关键力量。从日常生活中的便捷通信、在线购物,到工业领域的智能制造、远程协作,再到科研中的海量数据传输与分布式计算,计算机网络无处不在,深刻改变着我们的生活与工作模式。作为计算机网络专业的学生,在这个快速发展的领域中,我们肩负着理解、构建和创新网络技术的重任。计算机网络知识体系庞大且复杂,涵盖了从底层硬件通信到高层
- 计算机网络学习:体系化学习助力能力提升
xiayan827
计算机网络学习
引言在数字化浪潮席卷全球的当下,计算机网络已然成为推动社会发展、经济增长以及科技创新的关键力量。从日常生活中的便捷通信、在线购物,到工业领域的智能制造、远程协作,再到科研中的海量数据传输与分布式计算,计算机网络无处不在,深刻改变着我们的生活与工作模式。作为计算机网络专业的学生,在这个快速发展的领域中,我们肩负着理解、构建和创新网络技术的重任。计算机网络知识体系庞大且复杂,涵盖了从底层硬件通信到高层
- Python大数据处理中有哪些分布式计算框架?如何选择和使用?
代码小狂热者
python开发语言
一、引言随着大数据时代的来临,数据处理和分析已成为企业和个人不可或缺的一部分。Python,作为一种简洁、易读且功能强大的编程语言,在大数据处理领域具有广泛的应用。而在处理大数据时,分布式计算框架的选择和使用至关重要。本文将介绍Python大数据处理中常见的分布式计算框架,并探讨如何根据实际需求进行选择和使用。二、Python大数据处理中的分布式计算框架ApacheSparkApacheSpark
- 从 0 到 Offer!大数据核心面试题全解析,答案精准拿捏面试官(hadoop篇)
浅谈星痕
大数据
1.什么是Hadoop?Hadoop是一个开源的分布式系统基础架构,用于存储和处理大规模数据集。它主要包含HDFS(HadoopDistributedFileSystem)分布式文件系统、MapReduce分布式计算框架以及YARN(YetAnotherResourceNegotiator)资源管理器。HDFS负责数据的分布式存储,将大文件分割成多个数据块存储在不同节点上;MapReduce用于分
- 5G和云计算
Shmilyぐ
云计算运维
5G和云计算一、5G云是什么?1、5G是第5代通信技术2、5G的3大特征:超大带宽、超低时延、超多连接3、主要特点:显著提升无线数据传输效率和质量二、云计算是什么?1、是通过网络提供可伸缩的分布式计算能力2、云计算3大服务模式:IaaS、PaaS、SaaS3、主要特点:集中式管理IT资源三、工作职能→5G云计算做什么?1、产品经理、界面设计、前端开发、后端开发、测试、云计算工程师2、云计算工作内容
- 什么是MapReduce
ThisIsClark
大数据mapreduce大数据
MapReduce:大数据处理的经典范式什么是MapReduce?MapReduce是一种编程模型和软件框架,用于大规模数据集(通常大于1TB)的并行处理。它由Google在2004年提出,后来成为ApacheHadoop项目的核心计算引擎。MapReduce通过将计算任务分解为两个主要阶段——Map(映射)和Reduce(归约)——来实现分布式计算。核心思想MapReduce的核心设计原则可以概
- AI转型指南
HeartException
人工智能学习机器学习
以下是为计算机学生/在职人员撰写《AI转型指南》的目录框架设计,兼顾系统性与实操性,采用模块化结构便于读者按需学习,前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站一、AI行业全景扫描(认知篇)技术图谱解构机器学习/深度学习/强化学习的技术边界NLP/CV/语音/推荐系统等细分赛道的就业热度对比传统计算机技能与AI能力的交叉点(如分布式计算、系统
- 深入理解 Hadoop MapReduce 调度原理与 YARN 架构
北漂老男人
MapReducehadoopmapreduce架构学习方法
深入理解HadoopMapReduce调度原理与YARN架构作者:标签:大数据、Hadoop、YARN、MapReduce、调度器一、前言在大数据领域,Hadoop是最重要的分布式计算平台之一。随着数据规模的增长,Hadoop从1.x到2.x发生了巨大变革,核心就是引入了YARN资源调度框架。本文将结合图示,详细梳理HadoopMapReduce的调度原理与YARN的工作机制。二、Hadoop1.
- Hadoop中的HDFS的存储机制
向阳争渡
大数据/Hadoophadoophdfs分布式计算数据存储存储
Hadoop中HDFS的存储机制HDFS(HadoopDistributedFileSystem)是Hadoop分布式计算中的数据存储系统,是基于流数据模式访问和处理超大文件的需求而开发的。下面我们首先介绍HDFS中的一些基础概念,然后介绍HDFS中读写操作的过程,最后分析了HDFS的优缺点。1.HDFS中的基础概念Block:HDFS中的存储单元是每个数据块block,HDFS默认的最基本的存储
- 全面解析Hadoop配置文件:架构、调整与最佳实践
秦道衍
本文还有配套的精品资源,点击获取简介:Hadoop作为一个关键组件在分布式计算中处理和存储大量数据,而其配置文件则是保证系统正常运行和性能优化的核心。文章详细探讨了Hadoop配置文件的作用,包括核心配置文件及其内容,并阐述如何根据实际需求进行适当调整。同时,介绍了针对HDFS、MapReduce和YARN的主要配置文件,并通过实例说明如何细化设置以满足性能和资源管理的需求。最后,文章分享了一些最
- 跨平台迁移鸿蒙实战:3步构建分布式计算器,手机手表秒级协同!
harmonyos
摘要本文深入探讨将跨平台应用迁移到鸿蒙系统的关键步骤,通过实现一个分布式计算器案例,展示如何利用鸿蒙的分布式架构实现手机与手表协同计算。你将学习到模块化设计、响应式布局、设备能力适配等核心技术,并获取可直接运行的代码实现。最佳实践详解与场景分析迁移到鸿蒙系统不仅是简单的代码移植,更需要充分利用其分布式能力。以下是核心实践要点:理解分布式架构鸿蒙的分布式软总线技术让设备间通信像本地调用一样简单。比如
- 大数据基础——大数据处理架构Hadoop
皮皮大卫
大数据hadoop大数据
一、Hadoop是什么?(1)Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供了系统底层细节透明的分布式基础架构(2)Hadoop是基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中(3)Hadoop的核心是分布式文件系统HDFS(HadoopDistributedFileSystem)和MapReduce(4)Hadoop被公认为行业大数据
- Hadoop:大数据处理的核心框架
l123565
hadoop大数据
一、引言随着数据量的不断增长,传统的数据处理方式已经无法满足现代企业和组织的需求。Hadoop作为一个开源的分布式计算框架,为大数据处理提供了强大的支持。本文将对Hadoop进行详细介绍,包括其基本概念、核心组件、应用场景以及安装配置等方面。二、Hadoop概述Hadoop是一个由Apache基金会所开发的分布式系统基础架构,主要解决的是海量数据的存储和计算问题。Hadoop具有高效、可靠、可扩展
- MapReduce技术详解
暴躁哥
大数据技术mapreduce大数据
MapReduce技术详解MapReduce是一个分布式计算框架,用于大规模数据集的并行处理。本文将详细介绍MapReduce的工作原理、编程模型、优化策略以及最佳实践。1.MapReduce概述1.1基本概念分布式计算框架大规模数据处理自动并行化容错机制数据本地化1.2核心特性高可靠性高扩展性高容错性数据本地化简单编程模型1.3应用场景日志分析数据挖掘机器学习搜索引擎数据统计2.工作原理2.1执
- Hive SQL:一小时快速入门指南
在大数据处理领域,HiveSQL作为连接传统数据库与分布式计算的桥梁,已成为数据工程师的核心技能之一。本文将突破常规入门教程的局限,不仅深入解析HiveSQL的核心语法,更会详细阐述每个参数的底层逻辑与性能影响,助你在一小时内快速掌握HiveSQL的精髓。一、HiveSQL初相识Hive是基于Hadoop的数据仓库工具,通过类SQL语法实现对HDFS数据的查询分析。与传统数据库不同,Hive将SQ
- 讲解负载均衡
"匠"人
负载均衡运维java
一.什么是负载均衡负载均衡是一种将请求按一定策略分配到多个后端资源的技术其作用主要如下分摊压力:避免单个节点过载,提升整体吞吐量。高可用性:屏蔽故障节点,自动切换到健康节点。弹性扩展:支持动态扩缩容。例如增加/减少实例。主要涉及场景:微服务架构:服务消费者调用多个服务提供者时,分配请求。API网关:统一入口接受所有请求,转发到后端多个业务服务实例。分布式计算:任务队列(kafka)的分区分配到多个
- 基于 Java 的大数据分布式计算在基因编辑数据分析与精准医疗中的应用进展
知识产权13937636601
计算机java分布式计算基因编辑
随着基因测序成本断崖式下降(单人类全基因组低于100)和CRISPR基因编辑技术成熟,全球日均产生超20PB基因数据。传统单机生物信息学工具难以应对海量多组学数据的整合、分析与临床转化。本文将系统阐述**Java技术栈如何构建新一代基因大数据计算中枢**:基于Hadoop+Spark的分布式架构实现千倍加速的基因组比对;通过Flink流式计算引擎支撑CRISPR脱靶效应实时预测;利用ApacheA
- 大数据实时+离线项目架构----智慧物流大数据平台(超流行框架!)
智慧物流大数据平台文章目录智慧物流大数据平台一、项目背景二、逻辑架构三、解决方案技术亮点:数据流转四、项目的技术选型4.1流式处理平台4.2分布式计算平台4.3海量数据存储框架软件版本一、项目背景本项目基于一家大型物流公司研发的智慧物流大数据平台。该物流公司是国内综合性快递、物流服务商,并在全国各地都有覆盖的网点。经过多年的积累、经营以及布局,拥有大规模的客户群,日订单达上千万。如此规模的业务数据
- 大模型多显卡多服务器并行计算方法与实践指南
非著名架构师
大模型知识文档大模型集群部署大模型多卡部署大模型并行部署
一、分布式训练概述大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式:数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本模型并行:将模型分割到不同设备,每个设备处理部分模型计算现代大模型训练通常结合这两种方式,形成混合并行策略。二、硬件环境准备1.多机多卡环境配置组件要求建议配置GPU支持CUDANVIDIAA100/H100网络高速互联Inf
- Spark入门指南:大数据处理的第一个Hello World程序
AI天才研究院
ChatGPTAI大模型应用入门实战与进阶spark大数据分布式ai
Spark入门指南:大数据处理的第一个HelloWorld程序关键词:Spark、大数据处理、RDD、WordCount、PySpark、分布式计算、HelloWorld程序摘要:本文以经典的WordCount程序为切入点,系统讲解ApacheSpark的核心概念、开发流程与实战技巧。通过从环境搭建到代码实现的全流程解析,帮助大数据初学者快速掌握Spark的基础操作,理解分布式计算的核心逻辑。文章
- Hadoop 三巨头:大数据界的搬砖天团
AAA建材批发王师傅
大数据hadoop分布式
各位同学好,今天咱来唠唠大数据领域的"老大哥"Hadoop。这玩意儿就像大数据界的基建狂魔,而它的三大核心组件——HDFS、MapReduce和YARN,堪称分布式计算界的"搬砖天团"。咱今天就用接地气的方式,讲讲这三位大佬是怎么在数据海洋里搞建设的。一、HDFS:分布式仓库的"货架管理员"首先说说HDFS(HadoopDistributedFileSystem),这东西本质上就是个超级大仓库,但
- Hadoop与大数据之间的关系和区别
一个鬼脸让我难安
程序员大数据程序员编程语言hadoop
走进大数据,一种新兴的数据挖掘技术,它正在让大数据处理和分析变得更便宜更快速。大数据技术一旦进入超级计算时代,很快便可应用于普通企业,在遍地开花的过程中,它将改变许多行业业务经营的模式。在计算机世界里,大数据被定义为一种使用非传统的数据过滤工具,对大量有序或无序数据集合进行的挖掘过程,它包括但不仅限于分布式计算(Hadoop)。大数据已经站在了数据存储宣传的风口浪尖,也存在着大量不确定因素,这点上
- AI算力网络与通信中量化技术的挑战与机遇
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构AI人工智能与大数据技术人工智能网络ai
AI算力网络与通信中量化技术的挑战与机遇关键词:AI算力网络、量化技术、通信优化、模型压缩、分布式计算摘要:随着AI应用的爆发式增长,算力需求与网络通信压力同步激增。量化技术作为连接AI算力网络与通信效率的关键桥梁,通过降低数据精度压缩模型规模、减少传输开销,成为解决“算力-通信”矛盾的核心技术。本文将从生活场景出发,用“快递网络”“语言翻译”等通俗比喻,拆解AI算力网络与量化技术的底层逻辑,结合
- 大数据处理中的隐藏杀手 —— 数据倾斜,你了解多少?
※尘
大数据数据分析sqlhive
在大数据的广袤世界里,我们怀揣着让数据创造价值的美好愿景,构建起复杂而庞大的数据处理系统。但在这看似有序的数字宇宙中,数据倾斜如同隐藏在暗处的杀手,悄然威胁着系统的高效运行。今天,就让我们一同揭开数据倾斜的神秘面纱,深入了解它的表现、成因以及应对之策。一、数据倾斜的表现数据倾斜,简单来说,就是数据分布不均匀,大量数据集中到一点,形成数据热点的现象。在分布式计算框架(如Hadoop、Spark)和分
- 深入学习 Apache Spark:从入门到精通
mckim_
笔记学习大数据spark
引言随着大数据时代的到来,数据处理和分析的需求日益增长。ApacheSpark是一个快速、通用、可扩展的分布式计算引擎,它不仅支持批处理,也支持流处理,并且提供了丰富的API接口来简化开发。本文将带你走进Spark的世界,了解它的核心概念、工作原理以及如何在实际项目中应用,特别关注使用Java语言进行开发。一、为什么选择Spark?速度:相比传统的MapReduce框架,Spark可以达到10倍甚
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo