- OpenCV中添加高斯噪声到彩色图像和点云
LpmShell
opencv人工智能计算机视觉点云
在计算机视觉和图像处理中,噪声是一种常见的现象,可以对图像和点云数据产生不良影响。高斯噪声是一种常见的噪声类型,它具有正态分布的特点。在本文中,我们将使用OpenCV库来添加高斯噪声到彩色图像和点云数据,并提供相应的源代码示例。添加高斯噪声到彩色图像首先,我们将介绍如何使用OpenCV库向彩色图像添加高斯噪声。以下是添加高斯噪声的步骤:步骤1:导入必要的库importnumpyasnpimport
- 分形、大自然的分形几何、数据可视化、Python绘图
timedot-hj
python绘图指南-分形与数据可视化可视化python几何学算法
分形、大自然的分形几何、数据可视化、Python绘图中国传统中的『分形』大自然的分形几何数据可视化本系列采用turtle、matplotlib、numpy这三个Python工具,以分形与计算机图像处理的经典算法为实例,通过程序和图像,来帮助读者一步步掌握Python绘图和数据可视化的方法和技巧,并且让读者感受到“龙枝屈曲竞分形,瑰丽绮错千万状”的分形魅力。本系列共有八章,分别为海岸线有多长,基因与
- Alibaba Spring Cloud 十七 Sentinel熔断降级
空灵宫(Ethereal Palace)
AlibabaSpringCloudspringcloudsentinelspring
概述在微服务架构中,熔断与降级是保证系统稳定性的重要机制,能有效防止故障蔓延或雪崩效应。当某个服务出现异常、延迟过高或错误率过高时,触发熔断保护,将该服务“隔离”一段时间,避免影响整体系统的吞吐和可用性。SpringCloudAlibabaSentinel提供了灵活的熔断降级(Degrade)机制,可以根据响应时间(RT)、异常比例或异常数等指标,自动触发熔断并执行相应的降级策略,为业务提供及时的
- 二分查找算法
mcharleylei
算法python
目录1、概述2、代码实现(1)递归实现(2)非递归实现1、概述二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查
- 图像分类与识别的自组织特征映射网络实践
无声远望
本文还有配套的精品资源,点击获取简介:自组织特征映射网络(SOFM)是一种无监督学习模型,适用于图像处理中的预处理、特征提取和分类识别。通过在MATLAB中实现SOFM,可以进行数据预处理、特征提取、网络训练、分类与识别以及优化评估。本内容涵盖了SOFM网络的应用步骤、训练过程、参数调整和性能评估,旨在提供图像处理问题的解决方案。1.自组织特征映射网络简介1.1自组织特征映射网络概述自组织特征映射
- OpenCV实战技术应用
yzx991013
OpenCV基础全集opencv人工智能计算机视觉
10.0角点检测应用技术实现,使用SIFT算法进行特征点检测并绘制。结果:实现过程:解析过程:1.导入模块:importcv2:导入opencv库,用于图像处理操作,包括图像读取、特征提取、图像绘制、匹配等。importnumpyasnp:导入numpy库,用于处理数组数据,在特征描述符的存储和处理中可能会用到。2.函数定义:sift_tz():功能:使用SIFT算法进行特征点检测并绘制。实现:i
- 第四届先进材料与机械电子国际学术会议(ICAMM 2024)
2301_79125431
java
第四届先进材料与机械电子国际学术会议(ICAMM2024)【前三届均已见刊EI检索,检索信息均可查询!四大高校联合支持】2024年第四届先进材料与机械电子国际题解|字符串排序-golang最简洁最易懂解法packagemainimport("bufio""fmt&q题解|#数列求和#publicclassMain{publicstaticvoidmain(Str第四届图像处理与智能控制国际学术会议
- 面试踩坑笔记之Object与性能优化
向上_50358291
面试笔记性能优化
1、两个Object对象用equals相比较,是否相等?//Object类使用equals()方法//创建两个对象Objectobj1=newObject();Objectobj2=newObject();//判断obj1与obj2是否相等//不同对象,内存地址不同,不相等,返回falseSystem.out.println(obj1.equals(obj2));//false2、Object.e
- 有意思的题目01
老薛爱吃大西瓜
算法c语言学习排序算法数据结构
数组去重题目:手动输入一个数组(int),长度自定,将数组内容去重,并输出值输入:1232425262输出:13456思路:1.先找到重复数字,能够两两对比的方法,可以进行选择排序2.将重复数字改为标记数字,这里为了方便我选的是0当然,为了避免与数组中值重复,导致出错,可以用stdlib头文件下面的rand()函数获取一个随机值,将其与数组内容对比,没有相等的就作为标记值3.将标记数组后移//创建
- sql里面的asc和desc排序原理
one996
记录程序员sql
最近遇到一个数据库的问题,sql语句是对版本进行降序排列。如下例子:用下载sql去查询,没有排序的效果。SELECT*FROMdata2WHEREpn=''ANDwsid=''ANDorder_ork=''ORDERBY'tpver'desc如下两个版本V3.7.2-R1.0Z1.3.1V3.11-R9.0Z1.4因为desc的排序方式是hashcode,按照我的理解,应该是从R开始比较,R3相等
- logback+kafka+ELK实现日志记录(操作)
酷酷的码农小哥
javakafkaspringbootspring
logback+kafka+ELK实现日志记录前言环境准备配置Logbackpom文件改造新增logback-spring.xmlboot配置文件一下怎么去下载安装我就不多说了,直接上代码。日志平台业务思路用户请求进入后台根据搜索的参数去查询内容返回所有信息,返回json数据,当用户查看详情后根据查询到的内容里面的traceId去es里查询和traceId相等的所有日志信息最后返回给前端业务流程[
- R数据分析:多分类问题预测模型的ROC做法及解释
公众号Codewar原创作者
R数据分析
有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评估指标。那么肯定是统一成ROC了,刚好借这个机会给大家讲讲ROC在多分类问题情形下的具体使用和做法。ROC曲线回顾ROC曲线(ReceiverOperatingCharacteristicCurve)
- Swin-Unet多分类:图像分割领域的强大工具
甄亚凌
Swin-Unet多分类:图像分割领域的强大工具【下载地址】Swin-Unet多分类资源文件介绍本仓库提供了一个名为“Swin-Unet多分类”的资源文件,该文件主要用于图像分割任务中的多分类问题。资源文件中包含了一个基于Swin-Unet模型的实现,旨在对图像进行多分类分割项目地址:https://gitcode.com/open-source-toolkit/32588项目介绍在图像处理和计算
- Python 实现 RGB 和 HSV 相互转换算法
传说里的故事
python算法开发语言
Python实现RGB和HSV相互转换算法在图像处理领域,RGB和HSV是两种最常用的颜色空间。RGB是红绿蓝三原色的组合,HSV是色调、饱和度和亮度的组合。在不同应用场景下,需要将RGB和HSV进行相互转换。下面给出Python实现RGB和HSV相互转换的算法,并附上完整的源码。首先,我们需要导入colorsys库。这个库提供了许多颜色空间的转换函数。接下来,我们定义RGBToHSV和HSVTo
- 【揭秘】图像算法工程师岗位如何进入?
认识祂
人工智能算法图像算法工程师
“图像算法工程师,主要专注于开发图像处理和计算机视觉算法,广泛应用于各行业。本文,我们来揭秘一下他们的日常工作,以及如何成为这一领域的专业人才。”01图像算法工程师的日常工作算法设计与开发图像算法工程师的核心任务是设计和开发算法,以解决特定的图像处理或计算机视觉问题。常见的任务包括:图像分类:使用卷积神经网络(CNN)对图像进行分类,常见算法如ResNet、VGG。目标检测:在图像中定位并标注物体
- 吴恩达深度学习笔记(七)——机器学习策略
子非鱼icon
深度学习自学笔记深度学习机器学习人工智能神经网络吴恩达
一、正交化通俗的理解就是:要能够诊断出系统性能瓶颈在哪里,以有策略刚好解决这个问题。一个“按钮”只负责解决一件事情。二、单一数字评估指标准确率(precision):在分类器中标记为猫的例子中,有多少是真的猫召回率(recall):对于所有的真猫图片,你的分类器正确识别了多少。但如果有两个评估指标,就很难去选择一个更好的分类器,如下图所示。所以有一个结合这两个指标的标准方法,也即F1分数,定义如下
- 提升制造业效率的利器:基于Python的自动化质检系统
Echo_Wish
Python进阶python自动化开发语言
在现代制造业中,质量控制(QC)是确保产品符合客户要求和行业标准的重要环节。然而,传统的质检流程往往依赖人工检验,不仅耗时耗力,还容易受人为因素影响,导致错误率较高。在此背景下,自动化质检系统应运而生,借助人工智能(AI)和Python编程语言,实现高效、准确的质检过程。本文将探讨自动化质检系统的优势,并通过代码示例展示其实际应用。自动化质检系统的优势提高效率:自动化质检系统可以全天候不间断地工作
- AI赋能软件工程:领域特定语言的智能生成
前端
软件开发的世界日新月异,效率和成本始终是开发者们关注的焦点。为了应对日益复杂的软件项目,领域特定语言(DSL,Domain-SpecificLanguage)应运而生。DSL允许开发者使用更贴近特定领域问题的语言进行编程,从而提高开发效率并降低错误率。然而,DSL的开发通常需要专业的知识和大量的投入,这使得许多团队望而却步。幸运的是,AI代码生成器技术的崛起为我们提供了解决方案,让DSL的开发和应
- 机器学习笔记 - 机器学习/深度学习实战案例合集
坐望云起
深度学习从入门到精通机器学习深度学习人工智能案例应用神经网络
一、简述如何学习机器学习/深度学习,理论和实践都很重要,理论上的内容需要看课程、读教材。但是实践需要自己动手,实践之后自然会对理论有更深入的理解。怎么实践?借用欧阳修《卖油翁》的话”无他,但手熟尔“。就是多看多写多跑。下面创建这个github的目的是为了存放一些图像处理/计算机视觉/机器学习/深度学习的示例代码集合,不定期会添加新的示例,可供参考。GitHub-bashendixie/ml_too
- 【论文速读】| 评估并提高大语言模型生成的安全攻击探测器的鲁棒性
llm
基本信息原文标题:EvaluatingandImprovingtheRobustnessofSecurityAttackDetectorsGeneratedbyLLMs原文作者:SamuelePasini,JinhanKim,TommasoAiello,RocíoCabreraLozoya,AntoninoSabetta,PaoloTonella作者单位:UniversitàdellaSvizze
- Python自动化运维:一键掌控服务器的高效之道
蒙娜丽宁
Python杂谈运维python自动化
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在互联网和云计算高速发展的今天,服务器数量的指数增长使得手动运维和管理变得异常繁琐。Python凭借其强大的可读性和丰富的生态系统,成为实现自动化运维的理想语言。本文以“Python自动化运维:编写自动化脚本进行服务器管理”为主题,深入探讨了如何利用Py
- 全面指南:使用JMeter进行性能压测与性能优化(中间件压测、数据库压测、分布式集群压测、调优)
vip1024p
面试学习路线阿里巴巴jmeter性能优化中间件
目录一、性能测试的指标1、并发量2、响应时间3、错误率4、吞吐量5、资源使用率二、压测全流程三、其他注意点1、并发和吞吐量的关系2、并发和线程的关系四、调优及分布式集群压测(待仔细学习)1.线程数量超过单机承载能力时的解决方案2.如何搭建分布式集群3.实施集群压测及监控4.处理集群中单台施压机报错的情况5.长时间压测(10小时)的注意事项6.处理混合场景:用户思考时间及多个服务同时压测7.开发压测
- 【水果识别】SVM水果成熟检测系统(含苹果 香蕉 橙子)【含GUI Matlab源码 11052期】含报告
Matlab武动乾坤
Matlab图像处理(进阶版)matlab
Matlab武动乾坤博客之家博主简介:985研究生,Matlab领域科研开发者;座右铭:行百里者,半于九十。代码获取方式:CSDNMatlab武动乾坤—代码获取方式更多Matlab图像处理仿真内容点击①Matlab图像处理(进阶版)⛳️关注CSDNMatlab武动乾坤,更多资源等你来!!⛄一、SVM水果成熟检测系统SVM(支持向量机)水果成熟检测系统的原理和流程如下:原理:1SVM是一种监督学习算
- 五款图片变清晰工具帮助你,轻松实现一键修复模糊图片
Ai工具分享
人工智能
在日常生活中,我们难免会遇到图片模糊的情况,无论是年代久远的老照片因分辨率不足而显得模糊,还是在拍摄瞬间因轻微手抖导致的画面不清晰,这些问题都大大影响了图片的观赏价值。那么,面对这些模糊的图片,我们该如何让它们重焕新生,变得清晰明朗呢?接下来,我们就来介绍五款出色的软件,它们具备强大的图像处理能力,能够帮助你轻松实现一键修复模糊图片,让你的珍贵记忆恢复原有的清晰与生动。一、牛学长图片修复工具牛学长
- 【Python】深入探讨Python中的单例模式:元类与装饰器实现方式分析与代码示例
蒙娜丽宁
Python杂谈python单例模式开发语言
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界单例模式(SingletonPattern)是一种常见的设计模式,它确保一个类只有一个实例,并提供一个全局访问点。在Python中,实现单例模式的方式多种多样,包括基于装饰器、元类和模块级别的单例实现。本文将详细探讨这些实现方式,并通过大量代码示例进行演
- hive-04-Hive函数大全
九师兄
大数据-hivehive函数
一、关系运算:1.等值比较:=语法:A=B操作类型:所有基本类型描述:如果表达式A与表达式B相等,则为TRUE;否则为FALSE举例:hive>select1fromlxw_dualwhere1=1;12.不等值比较:B
- 【人工智能】Python实战:构建高效的多任务学习模型
蒙娜丽宁
Python杂谈AI人工智能python学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界多任务学习(Multi-taskLearning,MTL)作为机器学习领域中的一种重要方法,通过在单一模型中同时学习多个相关任务,不仅能够提高模型的泛化能力,还能有效利用任务间的共享信息。本文深入探讨了多任务学习的基本概念、优势及其在实际应用中的重要性。
- 软件生命周期管理的智能化转型:AI写代码工具赋能前端开发
前端
软件开发行业正经历着前所未有的变革。传统的软件生命周期管理模式,常常面临效率低下、成本居高不下、团队沟通不畅以及错误率高等诸多挑战。为了应对这些挑战,智能化转型已成为大势所趋。本文将探讨如何利用先进技术,例如AI写代码工具,来提升软件开发效率,最终实现软件生命周期管理的智能化转型。智能化转型:提升软件开发效率的关键软件生命周期管理涵盖需求分析、设计、编码、测试、部署和维护等多个阶段。每个阶段都可能
- 软件生命周期管理的智能化转型:AI写代码工具赋能前端开发
前端
软件开发行业正经历着前所未有的变革。传统的软件生命周期管理模式,常常面临效率低下、成本居高不下、团队沟通不畅以及错误率高等诸多挑战。为了应对这些挑战,智能化转型已成为大势所趋。本文将探讨如何利用先进技术,例如AI写代码工具,来提升软件开发效率,最终实现软件生命周期管理的智能化转型。智能化转型:提升软件开发效率的关键软件生命周期管理涵盖需求分析、设计、编码、测试、部署和维护等多个阶段。每个阶段都可能
- 基于纵横交叉算法优化的最小交叉熵图像多阈值分割 python
图像算法打怪
图像分割算法python开发语言
基于纵横交叉算法优化的最小交叉熵图像多阈值分割python文章目录基于纵横交叉算法优化的最小交叉熵图像多阈值分割python1.最小交叉熵阈值分割原理2.基于纵横交叉优化的多阈值分割3.算法结果:4.参考文献:5.Python代码摘要:本文介绍基于最小交叉熵的图像分割,并且应用纵横交叉算法进行阈值寻优。1.最小交叉熵阈值分割原理1993年,Li等人将交叉熵的概念引入到图像处理领域,提出了基于一维灰
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro