- pytorch矩阵乘法
weixin_45694975
pytorch深度学习神经网络
一、torch.bmminput1shape:(batch_size,seq1_len,emb_dim)input2shape:(batch_size,emb_dim,seq2_len)outputshape:(batch_size,seq1_len,seq2_len)注意:torch.bmm只适合三维tensor做矩阵运算特别地,torch.bmm支持tenso广播运算input1shape:(
- pytorch矩阵乘法总结
chenxi yan
PyTorch学习pytorch矩阵深度学习
1.element-wise(*)按元素相乘,支持广播,等价于torch.mul()a=torch.tensor([[1,2],[3,4]])b=torch.tensor([[2,3],[4,5]])c=a*b#等价于torch.mul(a,b)#tensor([[2,6],#[12,20]])a*torch.tensor([1,2])#广播,等价于torch.mul(a,torch.tensor
- DataWhale Pandas数据分析 Task01:预备知识
Shawnxs_
DataWhalePandas数据分类pythonpandas
文章目录练习Ex1:利用列表推导式写矩阵乘法Ex2:更新矩阵Ex3:卡方统计量Ex4:改进矩阵计算的性能Ex5:连续整数的最大长度心得体会练习Ex1:利用列表推导式写矩阵乘法一般的矩阵乘法根据公式,可以由三重循环写出:In[138]:M1=np.random.rand(2,3)In[139]:M2=np.random.rand(3,4)In[140]:res=np.empty((M1.shape[
- Matlab初等数学与线性代数
崔渭阳
matlabmatlab线性代数数据结构
初等数学算术运算基本算术加法+添加数字,追加字符串sum数组元素总和cumsum累积和movsum移动总和A=1:5;B=cumsum(A)B=1×51361015减法-减法diff差分和近似导数乘法.*乘法*矩阵乘法prod数组元素的乘积cumprod累积乘积pagemtimes按页矩阵乘法(自R2020b起)tensorprodTensorproductsbetweentwotensors(自
- pytorch torch.matmul函数介绍
qq_27390023
pytorch人工智能python
torch.matmul是PyTorch中用于进行矩阵乘法的函数。它可以执行两维矩阵、向量和更高维张量之间的乘法运算,支持的运算取决于输入张量的维度。1.函数签名torch.matmul(input,other,out=None)input:左乘的张量。other:右乘的张量。out:可选,用于存储输出结果的张量。2.不同维度的乘法规则torch.matmul根据输入张量的维度执行不同类型的乘法:
- Pytorch中乘法函数torch.matmul() 的一种用法
Coder_Jh
pytorch人工智能python
主要记录下torch.matmul(A,B)的用法中的一种情况:当A,B有一个是3维以上,另一个是3维或3维以上时,如果想要使用torch.matmul(A,B),必须同时满足:1.A和B的最后两个维度满足矩阵乘法的要求。例如A的维度是(3,1,3,3),B是(3,3,2),此时A的最后2维是(3,3),B是(3,2),符合条件2.除去最后两个维度,A和B的其他维度要满足可以广播的条件。例如A的维
- pytorch torch.einsum函数介绍
qq_27390023
pytorch人工智能python
torch.einsum是PyTorch中一个强大且灵活的张量运算函数,基于爱因斯坦求和约定进行操作。它允许用户通过简单的字符串表达式来定义复杂的张量运算,代替显式的循环或多个矩阵乘法操作。函数签名torch.einsum(equation,*operands)→Tensor参数equation:一个字符串,描述了张量间的操作关系。它使用爱因斯坦求和约定,用逗号分隔不同张量的索引,使用箭头(->)
- Python常用库-nump的使用
问道飞鱼
Python相关内容python开发语言numpy
文章目录安装NumPy导入NumPy创建数组1.使用列表创建数组2.多维数组3.使用特殊函数数组的基本操作1.数组形状和大小2.数据类型3.转换数据类型4.数组索引5.数组切片6.维度转换7.数组连接8.数组分割数学运算1.算术运算2.广播机制3.统计函数4.最大最小值5.排序索引与切片1.索引2.切片3.高级索引条件操作1.条件选择2.where函数复杂操作1.矩阵乘法2.线性代数3.矩阵的逆N
- 通义说【线性代数】为什么矩阵乘以向量是一个对矩阵中列向量的线性组合
假装有头像
线性代数
矩阵乘以向量可以被理解为该向量在矩阵所代表的空间变换下的映射结果,也可以看作是矩阵列向量的线性组合。为了更好地理解这一点,让我们从矩阵乘法的基本定义出发。假设有一个m×nm\timesnm×n的矩阵AAA和一个nnn维列向量x\mathbf{x}x,矩阵AAA可以写成由它的列向量组成的集合,即:A=[a1,a2,…,an]A=[\mathbf{a}_1,\mathbf{a}_2,\ldots,\m
- 【OpenGL】详细介绍Z-Buffer与W-Buffer
伐尘
OpenGl图形渲染openglvulkun3d
【OpenGL】详细介绍Z-Buffer与W-Buffer一、简介:Depth-Buffer(深度缓存)有两种:Z-Buffer和W-Buffer,这里讨论这两种深度缓存的区别,以及如何在两者之间转换。二、w的含义3D空间点的坐标是(x,y,z),为了使矩阵乘法具有平移变换的功效,我们用4D空间中的点(x,y,z,w)来表示3D空间中的点(x’,y’,z’),这两个不同空间点之间的关系是:x'=x
- Numpy学习笔记(二)
海棠未语
numpy学习笔记人工智能矩阵python
目录基本运算(一)矢量和矩阵运算1、加法2、减法3、乘法4、除法5、幂运算(二)统计运算1、求和2、求平均值3、求方差4、求标准差5、求最大值6、求最小值(三)逻辑运算1、逻辑非2、逻辑与3、逻辑或4、逻辑异或(四)比较运算1、等于2、不等于3、大于4、小于5、大于等于6、小于等于(五)指数和对数运算1、指数2、自然对数3、以10为底的对数4、以2为底的对数(六)线性代数运算1、矩阵乘法2、矩阵乘
- 线性代数基础
猿饵块
线性代数机器学习算法
向量的点积点乘和叉乘矩阵乘法规则:1,两个矩阵相乘时,第一个矩阵的列数必须等于第二个矩阵的行数矩阵乘法是点乘还是叉乘矩阵点乘:是矩阵各个对应元素相乘,这个时候要求两个矩阵必须同样大小。矩阵叉乘:矩阵的乘法就是矩阵a的第m行乘以矩阵b的第n列,各个元素对应相乘然后求和作为第m行n列元素的值所以矩阵乘法是叉乘。矩阵满足结合律,不满足交换律。满足交换律的是逆矩阵。旋转矩阵平移矩阵
- 二维的旋转平移矩阵
#君君#
算法算法
在二维空间中,旋转和平移变换可以通过2x2的旋转矩阵和2x3的变换矩阵来表示。二维旋转矩阵用于表示一个点或向量在二维平面上的旋转。对于绕原点逆时针旋转θ角的变换,其旋转矩阵为:复制代码R=|cosθ-sinθ||sinθcosθ|如果有一个二维点P(x,y),则旋转后的点P'(x',y')可以通过矩阵乘法得到:复制代码|x'||cosθ-sinθ||x||y'|=|sinθcosθ||y|计算后得
- 初识tensorflow程序设计模式
Phoenix Studio
深度学习tensorflow人工智能python
文章目录建立'计算图'tensorflowplaceholdertensorflow数值运算常用的方法tensorboard启动tensorboard的方法建立一维与二维张量建立一维张量建立二维张量建立新的二维张量矩阵的基本运算矩阵的加法矩阵乘法与加法github地址https://github.com/fz861062923/TensorFlow建立’计算图’#建立‘计算图’importtens
- Python 矩阵乘法
勤奋的大熊猫
Python科学计算基础python矩阵
Python矩阵乘法引言正文引言这里给大家介绍一下Pyhon中如何进行矩阵乘法运算。正文对于矩阵乘法,我们推荐使用Numpy包来进行,事实上,我们可以使用三个函数来实现。第一个是np.dot()函数,第二个是np.matmul()函数以及@符号。这里我们简单说一下它们的区别,np.matmul()函数与@符号是等价的。它们不能够用来计算标量乘法,比如当我们运行如下代码时就会报错。importnum
- numpy 矩阵乘法_一起学习Python常用模块——numpy
weixin_39636099
numpy矩阵乘法numpy矩阵乘法python对ndarray全体除以一个数python稀疏矩阵乘法python空数组python安装numpy模块
关注微信公众号:一个数据人的自留地作者介绍知乎@王多鱼百度的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。1前言Python在数据科学、机器学习、AI领等域中占据主导地位,目前对于数据分析师和算法工程师来说是必备技能。对于数据分析师来说,应掌握基础语法和数据科学的模块,主要包括:pandas、numpy和机器学习库sklearn等。对于算法工程师来说,还应掌握深度学习相关模块,主
- 【深度学习】S2 数学基础 P1 线性代数(上)
脚踏实地的大梦想家
#深度学习深度学习线性代数人工智能
目录基本数学对象标量与变量向量矩阵张量降维求和非降维求和累计求和点积与向量积点积矩阵-向量积矩阵-矩阵乘法深度学习的三大数学基础——线性代数、微积分、概率论;自本篇博文以下几遍博文,将对这三大数学基础进行重点提炼。本节博文将介绍线性代数知识,为线性代数第一部分。包含基本数学对象、算数和运算,并用数学符号和相应的张量代码实现表示它们。基本数学对象基本数学对象包含:0维:标量与变量;1维:向量;2维:
- 【小赛1】蓝桥杯双周赛第5场(小白)思路回顾
清风莫追
愚公搬算法蓝桥杯职场和发展python算法
我的成绩:小白(5/6)完稿时间:2024-2-13比赛地址:https://www.lanqiao.cn/oj-contest/newbie-5/相关资料:1、出题人题解:“蓝桥杯双周赛·第5次强者挑战赛/小白入门赛”出题人题解-知乎(zhihu.com)2、矩阵快速幂:算法学习笔记(4):快速幂-知乎(zhihu.com)讲得挺好的,从快速幂到矩阵快速幂,以及在求解递推式中的应用。3、矩阵乘法
- 【fortran】开源BLAS库矩阵乘法的简单Fortran示例
尘中928
编程数学矩阵线性代数
一、安装开源BLAS库OpenBLAS安装OpenBLAS可以通过几个步骤来完成,这些步骤因操作系统的不同而有所变化。以下是为几种常见系统下的安装。在Ubuntu/DebianLinux上安装OpenBLAS在基于Debian的系统(如Ubuntu)上,可以使用apt-get来安装OpenBLAS:sudoapt-getupdatesudoapt-getinstalllibopenblas-dev
- [算法学习]
Waldeinsamkeit41
算法学习
矩阵乘法只有当左矩阵列数等于右矩阵行数,才能相乘N*M的矩阵和M*K的矩阵做乘法后矩阵大小为N*k矩阵乘法规则:第一个矩阵A的第i行与第二个矩阵的第j列的各M个元素对应相乘再相加得到新矩阵C[i][j]的值整除同余同余的性质线性运算,对加法、减法、乘法封闭(封闭的意思是:可以把取模之后的数当作取模之前的数进行操作,因为在取模下,两者是等价的)可以同时约去一个可整除的数GCD与LCM最大公约数GCD
- Python运算符大全,值得收藏
hakesashou
python基础知识pythonjava算法
一、Python的算术运算Python的算术运算符与C语言类似,略有不同。包括加(+)、减(-)、乘(*)、除(/)、取余(%)、按位或(|)、按位与(&)、按位求补(~)、左移位(>)、单目求反(-)、幂运算(**)、整除运算(//)、增强运算、增强矩阵乘法(@)。增强运算是将算术运算符或逻辑运算符放到等号的左侧,与C语言的增强运算符相同。如x+=5,表示x=x+5,该种方法CPU的处理效率高于
- LoRA:语言模型微调的计算资源优化策略
编者按:随着数据量和计算能力的增加,大模型的参数量也在不断增加,同时进行大模型微调的成本也变得越来越高。全参数微调需要大量的计算资源和时间,且在进行切换下游任务时代价高昂。本文作者介绍了一种新方法LoRA,可以在保持模型性能的同时大幅减少微调的参数量和所需资源。LoRA通过引入两个低秩适配矩阵,用矩阵乘法的方法替换大部分参数。实验证明,LoRA在多项NLP任务上的表现与许多微调方法(如Adapte
- 假期刷题打卡--Day27
a-626
假期打卡学习c++c语言
1、MT1217矩阵乘法输入3X4整型矩阵A和4X3的整型矩阵B,计算A*B,放到矩阵C里面,输出矩阵C。格式输入格式:分两行输入两个矩阵,空格分隔。输出格式:按矩阵形式输出,整型,每个数字占3列,空格分隔。样例1输入:3007000-1020041001-1021021输出:121770-2-102-2分析过程本题的要点在于矩阵乘法如何计算,这就考验线性代数学的咋样了。对于3X4整型矩阵A和4X
- PyTorch中基础模块torch的详细介绍
科学禅道
PyTorchpytorch人工智能python
torch是PyTorch库的核心模块,提供了以下关键功能:张量(Tensor):类似于NumPy的ndarray,但可以无缝地在CPU或GPU上运行,并且支持自动微分,是深度学习模型中数据的主要表示形式。数学运算:包括基本的数学运算符重载(如加减乘除)、矩阵运算(如矩阵乘法、点积、卷积)、统计函数(如求和、平均值、最大值、最小值等)以及更复杂的数学操作。数据类型转换:允许用户创建不同数据类型的张
- 【大模型】万亿级别的大语言模型训练,基础设施如何支持
沐风—云端行者
云计算架构语言模型人工智能自然语言处理
万亿级别的大语言模型训练,基础设施如何支持前言1)培训百万亿参数的LLM是可行的,但需要每个GPU高达1TiB的次级内存池,双向带宽为100GB/s。2)对于1T模型的强扩展在约12288个GPU左右停滞,因为矩阵乘法变得小而低效,并且无法与通信overlap。3)超过10T模型需要更多的一级内存,其中HBM大小与模型大小成比例。4)将模型和系统大小增加到10T参数和10,000个GPU以上需要更
- dx12 龙书第二章学习笔记 -- 矩阵代数
帅狗狗灬
DirectX笔记学习线性代数矩阵c++
1.矩阵及其运算矩阵的运算:①加②减③标量乘法④矩阵乘法:矩阵乘法要有意义的条件是矩阵A的列数和矩阵B的行数必须相同,所以一般不满足交换律⑤转置矩阵:⑥矩阵行列式:detA学习行列式的主要目的是:利用它推导出求逆矩阵的公式方阵A是可逆的,当且仅当detA≠0余子阵:去除第i行和第j行得到的(n-1)*(n-1)矩阵0矩阵的行列式是一种递归定义,detA的A当是二维方阵时,行列式的值就是元素Aij的
- 矩阵连乘问题——动态规划
北辰2023
数据结构与算法设计矩阵动态规划算法
定义给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的(i=1,2,…,n-1)。由于矩阵乘法满足结合律,所以它们的连乘积A1A2…An有不同的计算次序。不同计算次序需要的乘法次数不同,求使乘法次数最少的计算次序。输入1.第一行:矩阵个数n2.第二行:(n+1)个数字p[n+1],其中p[i-1]和p[i]表示第i个矩阵的行和列数。输出最少乘法次数和对应计算次序。#include#i
- 蓝桥杯训练-矩阵乘法(day13)
Introspection
蓝桥杯蓝桥杯python
一、题目给定一个N阶矩阵A,输出A的M次幂(M是非负整数)输入:第一行是一个正整数N,M(,),表示矩阵的阶数和要求的幂数。接下来N行,每行N个绝对值不超过10的非负整数,描述矩阵A的值。输出:输出N行,每行N个整数,表示A的M次幂所对应的矩阵,相邻的数之间用空格隔开。输入:A=1234输出A的2次幂:7101522二、例子输入:221234输出:7101522三、解析A,B,C是三个矩阵,若Ax
- 机器学习(深度学习)路线
bigcindy
机器学习机器学习深度学习神经网络人工智能学习路线
数学相关1.1微积分:深度学习需要掌握高数微积分的知识,例如基本的求导、偏导数、梯度概念资源:浙江大学微积分MIT微积分公开课[1]MIT微积分公开课[2]1.2线性代数:需要掌握矩阵乘法、特征值、特征向量等,了解矩阵求导,深度学习中90%的运算可能都是优化为矩阵的运算,通过NumPy等高度优化的库完成。资源:MIT线性代数公开课同济大学线性代数清华大学李永乐-线性代数1.3概率论:了解各类分布,
- LoRA:语言模型微调的计算资源优化策略
Baihai IDP
技术干货LLMprompt白海科技深度学习人工智能大语言模型
编者按:随着数据量和计算能力的增加,大模型的参数量也在不断增加,同时进行大模型微调的成本也变得越来越高。全参数微调需要大量的计算资源和时间,且在进行切换下游任务时代价高昂。本文作者介绍了一种新方法LoRA,可以在保持模型性能的同时大幅减少微调的参数量和所需资源。LoRA通过引入两个低秩适配矩阵,用矩阵乘法的方法替换大部分参数。实验证明,LoRA在多项NLP任务上的表现与许多微调方法(如Adapte
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f