- 【华为OD技术面试真题 - 技术面】- python八股文真题题库(1)
算法大师
华为od面试python
华为OD面试真题精选专栏:华为OD面试真题精选目录:2024华为OD面试手撕代码真题目录以及八股文真题目录文章目录华为OD面试真题精选1.数据预处理流程数据预处理的主要步骤工具和库2.介绍线性回归、逻辑回归模型线性回归(LinearRegression)模型形式:关键点:逻辑回归(LogisticRegression)模型形式:关键点:参数估计与评估:3.python浅拷贝及深拷贝浅拷贝(Shal
- Python实现简单的机器学习算法
master_chenchengg
pythonpython办公效率python开发IT
Python实现简单的机器学习算法开篇:初探机器学习的奇妙之旅搭建环境:一切从安装开始必备工具箱第一步:安装Anaconda和JupyterNotebook小贴士:如何配置Python环境变量算法初体验:从零开始的Python机器学习线性回归:让数据说话数据准备:从哪里找数据编码实战:Python实现线性回归模型评估:如何判断模型好坏逻辑回归:从分类开始理论入门:什么是逻辑回归代码实现:使用skl
- 七.正则化
愿风去了
吴恩达机器学习之正则化(Regularization)http://www.cnblogs.com/jianxinzhou/p/4083921.html从数学公式上理解L1和L2https://blog.csdn.net/b876144622/article/details/81276818虽然在线性回归中加入基函数会使模型更加灵活,但是很容易引起数据的过拟合。例如将数据投影到30维的基函数上,模
- 机器学习VS深度学习
nfgo
机器学习
机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是人工智能(AI)的两个子领域,它们有许多相似之处,但在技术实现和应用范围上也有显著区别。下面从几个方面对两者进行区分:1.概念层面机器学习:是让计算机通过算法从数据中自动学习和改进的技术。它依赖于手动设计的特征和数学模型来进行学习,常用的模型有决策树、支持向量机、线性回归等。深度学习:是机器学习的一个子领
- Python实现梯度下降法
闲人编程
pythonpython开发语言梯度下降算法优化
博客:Python实现梯度下降法目录引言什么是梯度下降法?梯度下降法的应用场景梯度下降法的基本思想梯度下降法的原理梯度的定义学习率的选择损失函数与优化问题梯度下降法的收敛条件Python实现梯度下降法面向对象的设计思路代码实现示例与解释梯度下降法应用实例:线性回归场景描述算法实现结果分析与可视化梯度下降法的改进版本随机梯度下降(SGD)小批量梯度下降(Mini-batchGradientDesce
- 12312312
二进制掌控者
c++
c语言中的小小白-CSDN博客c语言中的小小白关注算法,c++,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm=1001.2014.3001.5343给大家分享一句我很喜欢我话:知不足而奋进,望远山而前行!!!铁铁们,成功的路上必然是孤独且艰难的,但是我们不可以放弃,远山就在前方,但我们
- 你知道什么是回调函数吗?
二进制掌控者
#C语言专栏c语言开发语言
c语言中的小小白-CSDN博客c语言中的小小白关注算法,c++,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm=1001.2014.3001.5343给大家分享一句我很喜欢我话:知不足而奋进,望远山而前行!!!铁铁们,成功的路上必然是孤独且艰难的,但是我们不可以放弃,远山就在前方,但我们
- 百行代码复现扩散模型-基于线性回归
李新然
数据统计分析深度学习线性回归算法回归python数据分析
文章目录引言简化模型原本模型模型改造实现过程数据集文本编码图像编码解码扩散过程训练过程生成过程完整实现结论引言多模态的深度学习模型,通常需要大量的算力去训练和验证。这导致缺乏算力的普通读者,阅读“大模型”论文,只能按论文作者所写来构造自己的认知。可能对很多类似笔者的人来说:纸上得来终觉浅。或许我们可以退而求其次,只选择Follow论文的思路。本文以DiffusionModel为例,说明从核心思想来
- 【机器学习】广义线性模型(GLM)的基本概念以及广义线性模型在python中的实例(包含statsmodels和scikit-learn实现逻辑回归)
Lossya
机器学习pythonscikit-learn线性回归人工智能逻辑回归
引言GLM扩展了传统的线性回归模型,使其能够处理更复杂的数据类型和分布文章目录引言一、广义线性模型1.1定义1.2广义线性模型的组成1.2.1响应变量(ResponseVariable)1.2.2链接函数(LinkFunction)1.2.3线性预测器(LinearPredictor)1.3常见的广义线性模型1.3.1线性回归1.3.2逻辑回归1.3.3泊松回归1.4GLM的特性1.5广义线性模型
- 惩罚线性回归模型
媛苏苏
算法/模型/函数线性回归算法回归
惩罚线性回归模型是一种常见的线性回归的变体,它在原始的线性回归模型中引入了一种惩罚项,以防止模型过拟合数据。在惩罚线性回归中,除了最小化预测值与实际值之间的平方误差(或其他损失函数)外,还会考虑模型参数的大小。惩罚项通常被加到模型的损失函数中,以限制模型参数的大小。这样做有助于减少模型对训练数据的过度拟合,提高模型的泛化能力。常见的惩罚线性回归模型包括:岭回归(RidgeRegression):岭
- L2正则线性回归(岭回归)
一壶浊酒..
深度学习回归线性回归
岭回归数据的特征比样本点还多,非满秩矩阵在求逆时会出现问题岭回归即我们所说的L2正则线性回归,在一般的线性回归最小化均方误差的基础上增加了一个参数w的L2范数的罚项,从而最小化罚项残差平方和简单说来,岭回归就是在普通线性回归的基础上引入单位矩阵。回归系数的计算公式变形如下岭回归最先用来处理特征数多于样本数的情况,现在也用于在估计中加入偏差,从而得到更好的估计。这里通过引入λ来限制了所有w之和,通过
- 通俗理解线性回归(Linear Regression)
小夏refresh
机器学习数据挖掘机器学习算法人工智能数据挖掘
线性回归,最简单的机器学习算法,当你看完这篇文章,你就会发现,线性回归是多么的简单.首先,什么是线性回归.简单的说,就是在坐标系中有很多点,线性回归的目的就是找到一条线使得这些点都在这条直线上或者直线的周围,这就是线性回归(LinearRegression).是不是有画面感了?那么我们上图片:![1.png][1]那么接下来,就让我们来看看具体的线性回归吧首先,我们以二维数据为例:我们有一组数据x
- 理论+实践,一文带你读懂线性回归的评价指标
木东居士
关于作者:饼干同学,某人工智能公司交付开发工程师/建模科学家。专注于AI工程化及场景落地,希望和大家分享成长中的专业知识与思考感悟。0x00前言:本篇内容是线性回归系列的第三篇。在《模型之母:简单线性回归&最小二乘法》、《模型之母:简单线性回归&最小二乘法》中我们学习了简单线性回归、最小二乘法,并完成了代码的实现。在结尾,我们抛出了一个问题:在之前的kNN算法(分类问题)中,使用分类准确度来评价算
- 第12周数学建模作业
WinterCruel
数学建模
第12周数学建模作业1、考察温度x对产量y的影响,测得下列10组数据:温度(℃)20253035404550556065产量(kg)13.215.116.417.117.918.719.621.222.524.3求y关于x的线性回归方程,检验回归效果是否显著,并预测x=42℃时产量的估值.Matlab代码:x=[20,25,30,35,40,45,50,55,60,65];y=[13.2,15.1
- 多元线性回归 python实现
雪可问春风
python机器学习numpy
importnumpyasnp#多元线性回归x=np.matrix([[2104,1416,1534,852,1],[5,3,3,2,1],[1,2,2,1,1],[45,40,30,36,1]])y=np.matrix([460,232,315,178])y1=np.matrix([460],[232].[315],[178])w=(x.T*x).I*x.T*yw1=(x.T*x).I*x.T*
- 机器学习100天-Day2503 Tensorboard 训练数据可视化(线性回归)
我的昵称违规了
首页.jpg源代码来自莫烦python(https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/4-1-tensorboard1/)今日重点读懂教程中代码,手动重写一遍,在浏览器中获取到训练数据Tensorboard是一个神经网络可视化工具,通过使用本地服务器在浏览器上查看神经网络训练日志,生成相应的可是画图,帮助炼丹师
- R实现线性回归逻辑回归
weixin_55475210
r语言线性回归逻辑回归
线性回归基本模型Y=β0+β1X1+β2X2+⋯+βmXm+ϵY=\beta_0+\beta_1X_1+\beta_2X_2+\cdots+\beta_mX_m+\epsilonY=β0+β1X1+β2X2+⋯+βmXm+ϵYYY为因变量X1,X2,…,XmX_1,X_2,\ldots,X_mX1,X2,…,Xm为m个自变量ϵ\epsilonϵ为残差lm()函数用于完成多元线性回归系数估计,回归系
- C#语言实现最小二乘法算法
2401_86528135
算法c#最小二乘法
最小二乘法(LeastSquaresMethod)是一种常用的拟合方法,用于在数据点之间找到最佳的直线(或其他函数)拟合。以下是一个用C#实现简单线性回归(即一元最小二乘法)的示例代码。1.最小二乘法简介对于一组数据点(x1,y1),(x2,y2),…,(xn,yn)(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)(x1,y1),(x2,y2),…,(xn,yn),最小二乘
- 2024国赛数学建模备战-数学建模思想方法大全及方法适用范围
V建模忠哥V
2024国赛数学建模
第一篇:方法适用范围一、统计学方法1.1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=uu=lnx来解决;
- 从0开始深度学习(4)——线性回归概念
青石横刀策马
从头学机器学习深度学习神经网络人工智能
1线性回归回归(regression)指能为一个或多个自变量与因变量之间的关系进行建模。1.1线性模型线性假设是指目标可以表示为特征的加权和,以房价和面积、房龄为例,可以有下面的式子:w称为权重(weight)b称为偏置(bias)、偏移量(offset)或截距(intercept)给定一个数据集,我们的目标是寻找模型的权重和偏置,使得根据模型做出的预测大体符合数据里的真实价格。1.2损失函数在我
- 线性回归(1)——起源
Magina507
几乎所有的科学观察都着了魔似的向平均值回归——《女士品茶》什么是线性回归线性回归这个概念是由达尔文的表弟高尔顿在研究父代与子代身高关系的时候提出的,我第一次看到这四个字的时候,心中暗骂,这起的什么破名,一点都不直观。什么叫线性?什么叫回归?你在进行什么骚操作啊。然而这两个概念其实准确表达了该算法的核心思想,只要解释明白了这两个概念,我们就搞明白了线性回归。线性高尔顿搜集了1078对父亲及其儿子的身
- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- Logistic分类算法原理及Python实践
doublexiao79
数据分析与挖掘分类python数据挖掘
一、Logistic分类算法原理Logistic分类算法,也称为逻辑回归(LogisticRegression),是机器学习中的一种经典分类算法,主要用于解决二分类问题。其原理基于线性回归和逻辑函数(Sigmoid函数)的组合,能够将输入特征的线性组合映射到一个概率范围内,从而进行分类预测。以下是Logistic分类算法的主要原理:1.线性组合首先,对于输入的n个特征,我们将其表示为一个n维的列向
- Spark MLlib LinearRegression线性回归算法源码解析
SmileySure
Spark人工智能算法SparkMLlib
线性回归一元线性回归hθ(x)=θ0+θ1xhθ(x)=θ0+θ1x——————–1多元线性回归hθ(x)=∑mi=1θixi=θTXhθ(x)=∑i=1mθixi=θTX—————–2损失函数J(θ)=1/2∑mi=1(hθ(xi)−yi)2J(θ)=1/2∑i=1m(hθ(xi)−yi)2—————31/2是为了求导时系数为1,平方里是真实值减去估计值我们的目的就是求其最小值最小二乘法要求较为
- Spark MLlib模型训练—回归算法 GLR( Generalized Linear Regression)
猫猫姐
Spark实战回归spark-ml线性回归spark
SparkMLlib模型训练—回归算法GLR(GeneralizedLinearRegression)在大数据分析中,线性回归虽然常用,但在许多实际场景中,目标变量和特征之间的关系并非线性,这时广义线性回归(GeneralizedLinearRegression,GLR)便应运而生。GLR是线性回归的扩展,能够处理非正态分布的目标变量,广泛用于分类、回归以及其他统计建模任务。本文将深入探讨Spar
- 机器学习(2)单变量线性回归
天凉玩个锤子
2.1模型表示我们学习的第一个算法是线性回归算法。在监督学习中,我们有一个数据集,这个数据集被称为训练集(TrainingSet)。我们用小写字母m来表示训练样本的数目。监督学习算法的工作方式以房屋价格的训练为例,将训练集里房屋价格喂给学习算法,学习算法工作后输出一个函数h,h代表hypothesis(假设)。函数h输入为房屋尺寸大小x,h根据输入来得出y值,y值对应房子的价格。因此,h是一个从x
- 【ShuQiHere】《机器学习的进化史『下』:从神经网络到深度学习的飞跃》
ShuQiHere
机器学习深度学习神经网络
【ShuQiHere】引言:神经网络与深度学习的兴起在上篇文章中,我们回顾了机器学习的起源与传统模型的发展历程,如线性回归、逻辑回归和支持向量机(SVM)。然而,随着数据规模的急剧增长和计算能力的提升,传统模型在处理复杂问题时显得力不从心。在这种背景下,神经网络重新进入了研究者们的视野,并逐步演变为深度学习,成为解决复杂问题的强大工具。今天,我们将进一步探索从神经网络到深度学习的进化历程,揭示这些
- 【ShuQiHere】《机器学习的进化史『上』:从数学模型到智能算法的百年征程》
ShuQiHere
机器学习人工智能
【ShuQiHere】引言:概述机器学习的演进机器学习的发展史是一段从数学基础到智能算法的演进历程。从19世纪的数学探索,到20世纪的计算革命,再到21世纪的智能算法应用,机器学习模型的演化贯穿了科学进步的每个重要阶段。这篇博客将系统回顾这些模型的历史演进,展示它们之间的联系,并探讨其在现代应用中的重要性。线性回归:机器学习的起点背景故事:1805年的法国,年轻的数学家Adrien-MarieLe
- 机器学习(ML)算法分类
活蹦乱跳酸菜鱼
机器学习
机器学习(ML)算法是一个广泛而多样的领域,涵盖了多种用于数据分析和模式识别的技术。以下是一些常见的机器学习算法分类及其具体算法:一、监督学习算法监督学习算法使用标记(即已知结果)的训练数据来训练模型,以便对新数据进行预测。线性回归:用于建立连续变量之间的关系,通过拟合一条直线或超平面来预测新数据的输出值。逻辑回归:虽然名称中包含“回归”,但实际上是用于分类问题,特别是二分类问题。通过将线性回归模
- 探索数据世界的钥匙:机器学习中的线性回归
程序员-李旭亮
机器学习
在浩瀚的数据海洋中,寻找隐藏的模式与规律,一直是科学家、工程师乃至各行各业决策者们的共同追求。而机器学习,作为这一领域的璀璨明珠,以其强大的数据分析与预测能力,正逐步改变着我们的世界。在众多机器学习算法中,线性回归以其简洁、直观、易于理解的特点,成为了入门机器学习的首选,更是解决回归问题的一把金钥匙。一、线性回归:定义与原理线性回归,顾名思义,是一种通过线性模型来预测一个或多个自变量(X)与因变量
- 312个免费高速HTTP代理IP(能隐藏自己真实IP地址)
yangshangchuan
高速免费superwordHTTP代理
124.88.67.20:843
190.36.223.93:8080
117.147.221.38:8123
122.228.92.103:3128
183.247.211.159:8123
124.88.67.35:81
112.18.51.167:8123
218.28.96.39:3128
49.94.160.198:3128
183.20
- pull解析和json编码
百合不是茶
androidpull解析json
n.json文件:
[{name:java,lan:c++,age:17},{name:android,lan:java,age:8}]
pull.xml文件
<?xml version="1.0" encoding="utf-8"?>
<stu>
<name>java
- [能源与矿产]石油与地球生态系统
comsci
能源
按照苏联的科学界的说法,石油并非是远古的生物残骸的演变产物,而是一种可以由某些特殊地质结构和物理条件生产出来的东西,也就是说,石油是可以自增长的....
那么我们做一个猜想: 石油好像是地球的体液,我们地球具有自动产生石油的某种机制,只要我们不过量开采石油,并保护好
- 类与对象浅谈
沐刃青蛟
java基础
类,字面理解,便是同一种事物的总称,比如人类,是对世界上所有人的一个总称。而对象,便是类的具体化,实例化,是一个具体事物,比如张飞这个人,就是人类的一个对象。但要注意的是:张飞这个人是对象,而不是张飞,张飞只是他这个人的名字,是他的属性而已。而一个类中包含了属性和方法这两兄弟,他们分别用来描述对象的行为和性质(感觉应该是
- 新站开始被收录后,我们应该做什么?
IT独行者
PHPseo
新站开始被收录后,我们应该做什么?
百度终于开始收录自己的网站了,作为站长,你是不是觉得那一刻很有成就感呢,同时,你是不是又很茫然,不知道下一步该做什么了?至少我当初就是这样,在这里和大家一份分享一下新站收录后,我们要做哪些工作。
至于如何让百度快速收录自己的网站,可以参考我之前的帖子《新站让百
- oracle 连接碰到的问题
文强chu
oracle
Unable to find a java Virtual Machine--安装64位版Oracle11gR2后无法启动SQLDeveloper的解决方案
作者:草根IT网 来源:未知 人气:813标签:
导读:安装64位版Oracle11gR2后发现启动SQLDeveloper时弹出配置java.exe的路径,找到Oracle自带java.exe后产生的路径“C:\app\用户名\prod
- Swing中按ctrl键同时移动鼠标拖动组件(类中多借口共享同一数据)
小桔子
java继承swing接口监听
都知道java中类只能单继承,但可以实现多个接口,但我发现实现多个接口之后,多个接口却不能共享同一个数据,应用开发中想实现:当用户按着ctrl键时,可以用鼠标点击拖动组件,比如说文本框。
编写一个监听实现KeyListener,NouseListener,MouseMotionListener三个接口,重写方法。定义一个全局变量boolea
- linux常用的命令
aichenglong
linux常用命令
1 startx切换到图形化界面
2 man命令:查看帮助信息
man 需要查看的命令,man命令提供了大量的帮助信息,一般可以分成4个部分
name:对命令的简单说明
synopsis:命令的使用格式说明
description:命令的详细说明信息
options:命令的各项说明
3 date:显示时间
语法:date [OPTION]... [+FORMAT]
- eclipse内存优化
AILIKES
javaeclipsejvmjdk
一 基本说明 在JVM中,总体上分2块内存区,默认空余堆内存小于 40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。 1)堆内存(Heap memory):堆是运行时数据区域,所有类实例和数组的内存均从此处分配,是Java代码可及的内存,是留给开发人
- 关键字的使用探讨
百合不是茶
关键字
//关键字的使用探讨/*访问关键词private 只能在本类中访问public 只能在本工程中访问protected 只能在包中和子类中访问默认的 只能在包中访问*//*final 类 方法 变量 final 类 不能被继承 final 方法 不能被子类覆盖,但可以继承 final 变量 只能有一次赋值,赋值后不能改变 final 不能用来修饰构造方法*///this()
- JS中定义对象的几种方式
bijian1013
js
1. 基于已有对象扩充其对象和方法(只适合于临时的生成一个对象):
<html>
<head>
<title>基于已有对象扩充其对象和方法(只适合于临时的生成一个对象)</title>
</head>
<script>
var obj = new Object();
- 表驱动法实例
bijian1013
java表驱动法TDD
获得月的天数是典型的直接访问驱动表方式的实例,下面我们来展示一下:
MonthDaysTest.java
package com.study.test;
import org.junit.Assert;
import org.junit.Test;
import com.study.MonthDays;
public class MonthDaysTest {
@T
- LInux启停重启常用服务器的脚本
bit1129
linux
启动,停止和重启常用服务器的Bash脚本,对于每个服务器,需要根据实际的安装路径做相应的修改
#! /bin/bash
Servers=(Apache2, Nginx, Resin, Tomcat, Couchbase, SVN, ActiveMQ, Mongo);
Ops=(Start, Stop, Restart);
currentDir=$(pwd);
echo
- 【HBase六】REST操作HBase
bit1129
hbase
HBase提供了REST风格的服务方便查看HBase集群的信息,以及执行增删改查操作
1. 启动和停止HBase REST 服务 1.1 启动REST服务
前台启动(默认端口号8080)
[hadoop@hadoop bin]$ ./hbase rest start
后台启动
hbase-daemon.sh start rest
启动时指定
- 大话zabbix 3.0设计假设
ronin47
What’s new in Zabbix 2.0?
去年开始使用Zabbix的时候,是1.8.X的版本,今年Zabbix已经跨入了2.0的时代。看了2.0的release notes,和performance相关的有下面几个:
:: Performance improvements::Trigger related da
- http错误码大全
byalias
http协议javaweb
响应码由三位十进制数字组成,它们出现在由HTTP服务器发送的响应的第一行。
响应码分五种类型,由它们的第一位数字表示:
1)1xx:信息,请求收到,继续处理
2)2xx:成功,行为被成功地接受、理解和采纳
3)3xx:重定向,为了完成请求,必须进一步执行的动作
4)4xx:客户端错误,请求包含语法错误或者请求无法实现
5)5xx:服务器错误,服务器不能实现一种明显无效的请求
- J2EE设计模式-Intercepting Filter
bylijinnan
java设计模式数据结构
Intercepting Filter类似于职责链模式
有两种实现
其中一种是Filter之间没有联系,全部Filter都存放在FilterChain中,由FilterChain来有序或无序地把把所有Filter调用一遍。没有用到链表这种数据结构。示例如下:
package com.ljn.filter.custom;
import java.util.ArrayList;
- 修改jboss端口
chicony
jboss
修改jboss端口
%JBOSS_HOME%\server\{服务实例名}\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml
中找到
<!-- The ports-default bindings are obtained by taking the base bindin
- c++ 用类模版实现数组类
CrazyMizzz
C++
最近c++学到数组类,写了代码将他实现,基本具有vector类的功能
#include<iostream>
#include<string>
#include<cassert>
using namespace std;
template<class T>
class Array
{
public:
//构造函数
- hadoop dfs.datanode.du.reserved 预留空间配置方法
daizj
hadoop预留空间
对于datanode配置预留空间的方法 为:在hdfs-site.xml添加如下配置
<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
 
- mysql远程访问的设置
dcj3sjt126com
mysql防火墙
第一步: 激活网络设置 你需要编辑mysql配置文件my.cnf. 通常状况,my.cnf放置于在以下目录: /etc/mysql/my.cnf (Debian linux) /etc/my.cnf (Red Hat Linux/Fedora Linux) /var/db/mysql/my.cnf (FreeBSD) 然后用vi编辑my.cnf,修改内容从以下行: [mysqld] 你所需要: 1
- ios 使用特定的popToViewController返回到相应的Controller
dcj3sjt126com
controller
1、取navigationCtroller中的Controllers
NSArray * ctrlArray = self.navigationController.viewControllers;
2、取出后,执行,
[self.navigationController popToViewController:[ctrlArray objectAtIndex:0] animated:YES
- Linux正则表达式和通配符的区别
eksliang
正则表达式通配符和正则表达式的区别通配符
转载请出自出处:http://eksliang.iteye.com/blog/1976579
首先得明白二者是截然不同的
通配符只能用在shell命令中,用来处理字符串的的匹配。
判断一个命令是否为bash shell(linux 默认的shell)的内置命令
type -t commad
返回结果含义
file 表示为外部命令
alias 表示该
- Ubuntu Mysql Install and CONF
gengzg
Install
http://www.navicat.com.cn/download/navicat-for-mysql
Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html
Step2:进入下载目录,解压压缩包:tar -zxvf navicat11_mysql_en.tar.gz
- 批处理,删除文件bat
huqiji
windowsdos
@echo off
::演示:删除指定路径下指定天数之前(以文件名中包含的日期字符串为准)的文件。
::如果演示结果无误,把del前面的echo去掉,即可实现真正删除。
::本例假设文件名中包含的日期字符串(比如:bak-2009-12-25.log)
rem 指定待删除文件的存放路径
set SrcDir=C:/Test/BatHome
rem 指定天数
set DaysAgo=1
- 跨浏览器兼容的HTML5视频音频播放器
天梯梦
html5
HTML5的video和audio标签是用来在网页中加入视频和音频的标签,在支持html5的浏览器中不需要预先加载Adobe Flash浏览器插件就能轻松快速的播放视频和音频文件。而html5media.js可以在不支持html5的浏览器上使video和audio标签生效。 How to enable <video> and <audio> tags in
- Bundle自定义数据传递
hm4123660
androidSerializable自定义数据传递BundleParcelable
我们都知道Bundle可能过put****()方法添加各种基本类型的数据,Intent也可以通过putExtras(Bundle)将数据添加进去,然后通过startActivity()跳到下一下Activity的时候就把数据也传到下一个Activity了。如传递一个字符串到下一个Activity
把数据放到Intent
- C#:异步编程和线程的使用(.NET 4.5 )
powertoolsteam
.net线程C#异步编程
异步编程和线程处理是并发或并行编程非常重要的功能特征。为了实现异步编程,可使用线程也可以不用。将异步与线程同时讲,将有助于我们更好的理解它们的特征。
本文中涉及关键知识点
1. 异步编程
2. 线程的使用
3. 基于任务的异步模式
4. 并行编程
5. 总结
异步编程
什么是异步操作?异步操作是指某些操作能够独立运行,不依赖主流程或主其他处理流程。通常情况下,C#程序
- spark 查看 job history 日志
Stark_Summer
日志sparkhistoryjob
SPARK_HOME/conf 下:
spark-defaults.conf 增加如下内容
spark.eventLog.enabled true spark.eventLog.dir hdfs://master:8020/var/log/spark spark.eventLog.compress true
spark-env.sh 增加如下内容
export SP
- SSH框架搭建
wangxiukai2015eye
springHibernatestruts
MyEclipse搭建SSH框架 Struts Spring Hibernate
1、new一个web project。
2、右键项目,为项目添加Struts支持。
选择Struts2 Core Libraries -<MyEclipes-Library>
点击Finish。src目录下多了struts