在Linu 3.1开始,Linux引入了regmap来同意管理内核的I2C, SPI等总线,将I2C, SPI驱动做了一次重构,把I/O读写的重复逻辑在regmap中实现。
用一个I2C设备为例,在3.1之前的I2C设备驱动,需要各自调用i2c_transfer来实现读写,比如:
static int raydium_i2c_pda2_write(struct i2c_client *client,
unsigned char addr, unsigned char *w_data, unsigned short length)
{
int retval = -1;
unsigned char retry;
unsigned char buf[MAX_WRITE_PACKET_SIZE + 1];
struct raydium_ts_data *data = i2c_get_clientdata(client);
struct i2c_msg msg[] = {
{
.addr = RAYDIUM_I2C_NID,
.flags = RAYDIUM_I2C_WRITE,
.len = length + 1,
.buf = buf,
},
};
if (length > MAX_WRITE_PACKET_SIZE)
{
return -EINVAL;
}
u8_i2c_mode = PDA2_MODE;
buf[0] = addr;
memcpy(&buf[1], w_data, length);
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++)
{
if (i2c_transfer(client->adapter, msg, 1) == 1)
{
retval = length;
break;
}
msleep(20);
}
if (retry == SYN_I2C_RETRY_TIMES)
{
dev_err(&data->client->dev,"[touch]%s: I2C write over retry limit.addr[0x%x]\n",__func__, addr);
retval = -EIO;
}
return retval;
}
需要自行构建i2c_msg,然后使用i2c_transfer传输数据。
但是使用regmap机制,就会变的更为简单。只需要如下几步:
// 1.构建regmap_config结构
static const struct regmap_config mlx90632_regmap = {
.reg_bits = 16,
.val_bits = 16,
.volatile_table = &mlx90632_volatile_regs_tbl,
.rd_table = &mlx90632_readable_regs_tbl,
.wr_table = &mlx90632_writeable_regs_tbl,
.use_single_rw = true,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_BIG,
.cache_type = REGCACHE_RBTREE,
};
// 2. 初始化regmap
regmap = regmap_init_i2c(client, &mlx90632_regmap);
//3.读写操作
ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
我们分析三步操作:
在regmap_config,定义了寄存器的各种信息,比如寄存器地址长度,寄存器值的长度,读写寄存器的地址范围的信息,寄存器地址和值的大小端已经缓冲方式。
struct regmap_config {
const char *name; // 可选,寄存器名字
int reg_bits; // 寄存器地址位宽,必须填写
int reg_stride; // 寄存器操作宽度,比如为1时,所有寄存器可操作,为2时,只有2^n可操作
int pad_bits;
int val_bits; // 寄存器值的位宽,必须填写
// 可选,判断寄存器是否可写,可读,是否可缓冲等回调
bool (*writeable_reg)(struct device *dev, unsigned int reg);
bool (*readable_reg)(struct device *dev, unsigned int reg);
bool (*volatile_reg)(struct device *dev, unsigned int reg);
bool (*precious_reg)(struct device *dev, unsigned int reg);
regmap_lock lock;
regmap_unlock unlock;
void *lock_arg;
// 寄存器读写方法,可选
int (*reg_read)(void *context, unsigned int reg, unsigned int *val);
int (*reg_write)(void *context, unsigned int reg, unsigned int val);
bool fast_io;
unsigned int max_register;
const struct regmap_access_table *wr_table; //可选,可写寄存器
const struct regmap_access_table *rd_table;//可选,可读寄存器
const struct regmap_access_table *volatile_table;
const struct regmap_access_table *precious_table;
const struct reg_default *reg_defaults;
unsigned int num_reg_defaults;
enum regcache_type cache_type; // 缓冲方式
const void *reg_defaults_raw;
unsigned int num_reg_defaults_raw;
u8 read_flag_mask;
u8 write_flag_mask;
bool use_single_rw;
bool can_multi_write;
enum regmap_endian reg_format_endian;
enum regmap_endian val_format_endian;
const struct regmap_range_cfg *ranges;
unsigned int num_ranges;
};
regmap_init_i2c在/kernel/driver/base/rgmap/regmap-i2c.c中实现:
struct regmap *regmap_init_i2c(struct i2c_client *i2c,
const struct regmap_config *config)
{
const struct regmap_bus *bus = regmap_get_i2c_bus(i2c, config);
if (IS_ERR(bus))
return ERR_CAST(bus);
return regmap_init(&i2c->dev, bus, &i2c->dev, config);
}
这里有两个新结构,一个regmap_bus和一个regmap。regmap_bus结构定位了I2C总线的读写函数。对于普通I2C设备,regmap_bus为:
static const struct regmap_bus *regmap_get_i2c_bus(struct i2c_client *i2c,
const struct regmap_config *config)
{
if (i2c_check_functionality(i2c->adapter, I2C_FUNC_I2C))
return ®map_i2c;
}
static struct regmap_bus regmap_i2c = {
.write = regmap_i2c_write,
.gather_write = regmap_i2c_gather_write,
.read = regmap_i2c_read,
.reg_format_endian_default = REGMAP_ENDIAN_BIG,
.val_format_endian_default = REGMAP_ENDIAN_BIG,
};
regmap_bus结构定义了读写函数和默认的寄存器地址和寄存器值的大小端。我们看下这个read函数指针实现:
@/kernel/driver/base/rgmap/regmap-i2c.c
static int regmap_i2c_read(void *context,
const void *reg, size_t reg_size,
void *val, size_t val_size)
{
struct device *dev = context;
struct i2c_client *i2c = to_i2c_client(dev);
struct i2c_msg xfer[2];
int ret;
xfer[0].addr = i2c->addr;
xfer[0].flags = 0;
xfer[0].len = reg_size;
xfer[0].buf = (void *)reg;
xfer[1].addr = i2c->addr;
xfer[1].flags = I2C_M_RD;
xfer[1].len = val_size;
xfer[1].buf = val;
ret = i2c_transfer(i2c->adapter, xfer, 2);
if (ret == 2)
return 0;
else if (ret < 0)
return ret;
else
return -EIO;
}
可以看到其实就是构造i2c_msg,选择操作寄存器地址然后读寄存器值。这正是regmap要做的事情,抽离出总线读写操作到regmap中,避免驱动去重复实现。
在看regmap_init函数:
struct regmap *regmap_init(struct device *dev,
const struct regmap_bus *bus,
void *bus_context,
const struct regmap_config *config)
{
struct regmap *map;
int ret = -EINVAL;
enum regmap_endian reg_endian, val_endian;
map = kzalloc(sizeof(*map), GFP_KERNEL);
// 将regmap_config定义的参数赋值到regmap中
map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
map->format.pad_bytes = config->pad_bits / 8;
map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
config->val_bits + config->pad_bits, 8);
map->reg_shift = config->pad_bits % 8;
if (config->reg_stride)
map->reg_stride = config->reg_stride;
else
map->reg_stride = 1;
map->use_single_rw = config->use_single_rw;
map->can_multi_write = config->can_multi_write;
map->dev = dev;
map->bus = bus;
map->bus_context = bus_context;
map->max_register = config->max_register;
map->wr_table = config->wr_table;
map->rd_table = config->rd_table;
map->volatile_table = config->volatile_table;
map->precious_table = config->precious_table;
map->writeable_reg = config->writeable_reg;
map->readable_reg = config->readable_reg;
map->volatile_reg = config->volatile_reg;
map->precious_reg = config->precious_reg;
map->cache_type = config->cache_type;
map->name = config->name;
/* regmap中有reg_read操作方法,通过bus是否为空赋值,对于该驱动,此处只会设置map->reg_read为_regmap_bus_read */
if (!bus) {
map->reg_read = config->reg_read;
map->reg_write = config->reg_write;
map->defer_caching = false;
goto skip_format_initialization;
} else if (!bus->read || !bus->write) {
map->reg_read = _regmap_bus_reg_read;
map->reg_write = _regmap_bus_reg_write;
map->defer_caching = false;
goto skip_format_initialization;
} else {
map->reg_read = _regmap_bus_read;
}
// 设置地址和寄存器值的大小端
reg_endian = regmap_get_reg_endian(bus, config);
val_endian = regmap_get_val_endian(dev, bus, config);
// 根据寄存器地址位宽和大小端解析寄存器地址
switch (config->reg_bits + map->reg_shift) {
case 32:
switch (reg_endian) {
case REGMAP_ENDIAN_BIG:
map->format.format_reg = regmap_format_32_be;
break;
case REGMAP_ENDIAN_NATIVE:
map->format.format_reg = regmap_format_32_native;
break;
default:
goto err_map;
}
break;
}
// 根据寄存器值位宽和大小端解析寄存器值
switch (config->val_bits) {
case 16:
switch (val_endian) {
case REGMAP_ENDIAN_BIG:
map->format.format_val = regmap_format_16_be;
map->format.parse_val = regmap_parse_16_be;
map->format.parse_inplace = regmap_parse_16_be_inplace;
break;
case REGMAP_ENDIAN_LITTLE:
map->format.format_val = regmap_format_16_le;
map->format.parse_val = regmap_parse_16_le;
map->format.parse_inplace = regmap_parse_16_le_inplace;
break;
case REGMAP_ENDIAN_NATIVE:
map->format.format_val = regmap_format_16_native;
map->format.parse_val = regmap_parse_16_native;
break;
default:
goto err_map;
}
break;
}
/* 对于val_bits = 16,reg_bits=16,regmap写函数选择_regmap_bus_raw_write */
if (map->format.format_write) {
map->defer_caching = false;
map->reg_write = _regmap_bus_formatted_write;
} else if (map->format.format_val) {
map->defer_caching = true;
map->reg_write = _regmap_bus_raw_write;
}
// 缓存初始化
ret = regcache_init(map, config);
}
regmap_init()函数初始化了regmap,regmap中函数bus指针和config寄存器参数,已经足够用来操作I2C的寄存器了。reg_read回调函数是我们在读数据要使用的方法,我们需要看其实现:
map->reg_read = _regmap_bus_read;
static int _regmap_bus_read(void *context, unsigned int reg,
unsigned int *val)
{
int ret;
struct regmap *map = context;
if (!map->format.parse_val)
return -EINVAL;
// 读出寄存器数据
ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
if (ret == 0) // 根据寄存器位值宽和大小端得到寄存器值
*val = map->format.parse_val(map->work_buf);
return ret;
}
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,unsigned int val_len)
{
int ret;
// 使用bus定义的read函数指针读数据
ret = map->bus->read(map->bus_context, map->work_buf,
map->format.reg_bytes + map->format.pad_bytes,
val, val_len);
return ret;
}
regmap_read函数用来读取寄存器值,实现如下:
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
int ret;
// 通过寄存器操作宽度判断寄存器操作是否合法
if (reg % map->reg_stride)
return -EINVAL;
map->lock(map->lock_arg);
ret = _regmap_read(map, reg, val);
map->unlock(map->lock_arg);
return ret;
}
static int _regmap_read(struct regmap *map, unsigned int reg,
unsigned int *val)
{
// 1.直接从缓存取值
if (!map->cache_bypass) {
ret = regcache_read(map, reg, val);
if (ret == 0)
return 0;
}
// 2.最终调用bus定义的read读寄存器数据
ret = map->reg_read(context, reg, val);
// 3.将寄存器结果写入缓存
if (!map->cache_bypass)
regcache_write(map, reg, *val);
return ret;
}
regmap_read函数最后调用bus的read函数,同理,regmap_write函数最终也会调用bus的write函数。
关于缓冲,需要解释的是,在regmap中加入了一层缓存,减少IO操作次数,提供硬件操作效率。
在Linux 4.0 版本中,已经有 3 种缓存类型,分别是数组(flat)、LZO 压缩和红黑树(rbtree)。数组好理解,是最简单的缓存类型,当设备寄存器很少时,可以用这种类型来缓存寄存器值。LZO(Lempel–Ziv–Oberhumer) 是 Linux 中经常用到的一种压缩算法,Linux 编译后就会用这个算法来压缩。这个算法有 3 个特性:压缩快,解压不需要额外内存,压缩比可以自动调节。在这里,你可以理解为一个数组缓存,套了一层压缩,来节约内存。当设备寄存器数量中等时,可以考虑这种缓存类型。而最后一类红黑树,它的特性就是索引快,所以当设备寄存器数量比较大,或者对寄存器操作延时要求低时,就可以用这种缓存类型。
到此,在驱动程序中regmap的基本使用方法和调用简析就结束了。