USACO 2006 November Gold 玉米地Corn Fields

Description

Farmer John新买了一块长方形的牧场,这块牧场被划分成M行N列(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地。FJ打算在牧场上的某几格土地里种上美味的草,供他的奶牛们享用。遗憾的是,有些土地相当的贫瘠,不能用来放牧。并且,奶牛们喜欢独占一块草地的感觉,于是FJ不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。当然,FJ还没有决定在哪些土地上种草。
  作为一个好奇的农场主,FJ想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择。当然,把新的牧场荒废,不在任何土地上种草,也算一种方案。请你帮FJ算一下这个总方案数。

Input

  第1行: 两个正整数M和N,用空格隔开;
  第2..M+1行: 每行包含N个用空格隔开的整数,描述了每块土地的状态。
  输入的第i+1行描述了第i行的土地。所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块地上不适合种草。

Output

  第1行: 输出一个整数,即牧场分配总方案数除以100,000,000的余数

Sample Input

2 3

1 1 1

0 1 0

Sample Output

9

Hint

【数据规模】
1 ≤ N,M ≤ 12

看数据范围知状压dp。

较一般状压而言,它多了一个“放棋”限制,有些格子不能放,因此我们处理每一行的土地状态,枚举的时候判断一下即可。

坑点:

1、每一行继承了上一行的方案,统计答案时不能累加

2、复制模数注意去“,”。。。

#include
using namespace std;
const int Maxn=13,p=100000000;
int n,m,tot,s[Maxn];
int ans,f[Maxn][1<=p)f[i][j]-=p;
			}
			if(i==n)ans+=f[i][j];
			if(ans>=p)ans-=p;
		}
	cout<

 

你可能感兴趣的:(状压dp)