网络编程--IO模型示例

IO模型在Richard Stevens的《UNIX网络编程,第一卷》(程序猿必备!)一书中有非常详尽的描述,以下简要介绍,并给出代码示例。

另外比较好的总结性blog,推荐:
使用异步 I/O 大大提高应用程序的性能
IO - 同步,异步,阻塞,非阻塞 (亡羊补牢篇)

常见网络IO模型:阻塞式IO、无阻塞式IO、IO复用、异步IO、信号驱动

阻塞式IO:
在一个进程发出IO请求后,进入阻塞状态,直到内核返回数据,才重新运行,如图:

代码
sever端:
#include 
#include 
#include 
#include 
#include 
#include 
#include 

int main()
{
	int sockfd, new_fd;
	int sin_size, numbytes;
	struct sockaddr_in addr, cliaddr;
	
	//创建socket
	if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
	{
		perror("createSocket");
		return -1;
	}
	
	//初始化socket结构
	memset(&addr, 0, sizeof(addr));
	addr.sin_family = AF_INET;
	addr.sin_port = htons(7092);
	addr.sin_addr.s_addr = htonl(INADDR_ANY);
	
	//绑定套接口
	if(bind(sockfd,(struct sockaddr *)&addr,sizeof(struct sockaddr))==-1)
	{
		perror("bind");
		return -1;
	}
	
	//创建监听套接口
	if(listen(sockfd,10)==-1)
	{
		perror("listen");
		return -1;
	}
	
	
	printf("server is running!\n");
	
	char buff[1024];
	//等待连接
	while(1) 
	{
		sin_size = sizeof(struct sockaddr_in);
		
		//接受连接
		if((new_fd = accept(sockfd, (struct sockaddr *)&cliaddr, (socklen_t*)&sin_size))==-1)
		{
			perror("accept");
			return -1;
		}
		
		//生成一个子进程来完成和客户端的会话,父进程继续监听
		if(!fork())
		{
			//读取客户端发来的信息
			memset(buff,0,sizeof(buff));
			if((numbytes = recv(new_fd,buff,sizeof(buff),0))==-1)
			{
				perror("recv");
				return -1;
			}
			printf("buff=%s\n",buff);
			
			//将从客户端接收到的信息再发回客户端
			if(send(new_fd,buff,strlen(buff),0)==-1)
			{
				perror("send");
			}
	
			close(new_fd);
			return 0;
		}
		//父进程关闭new_fd
		close(new_fd);
	}
	close(sockfd);
}
client端:
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

int main(int argc,char *argv[])
{
	if(argc!=3)
	{
		printf("%s: input IP & port\n",argv[0]);
		return 1;
	}
	int sockfd,numbytes;
	char buf[100] = "hello world";
	struct hostent *he;
	struct sockaddr_in their_addr;
	
	//将基本名字和地址转换
	he = gethostbyname(argv[1]);
	
	//建立一个TCP套接口
	if((sockfd = socket(AF_INET,SOCK_STREAM,0))==-1)
	{
		perror("socket");
		exit(1);
	}
	
	//初始化结构体
	their_addr.sin_family = AF_INET;
	their_addr.sin_port = htons(atoi(argv[2]));
	their_addr.sin_addr = *((struct in_addr *)he->h_addr);
	bzero(&(their_addr.sin_zero),8);
	
	//和服务器建立连接
	if(connect(sockfd,(struct sockaddr *)&their_addr,sizeof(struct sockaddr))==-1)
	{
		perror("connect");
		exit(1);
	}
	
	//向服务器发送字符串
	if(send(sockfd,buf,strlen(buf),0)==-1)
	{
		perror("send");
		exit(1);
	}
	memset(buf,0,sizeof(buf));
	
	//接受从服务器返回的信息
	if((numbytes = recv(sockfd,buf,100,0))==-1)
	{
		perror("recv");
		exit(1);
	}
	
	close(sockfd);
	return 0;
}

运行:
$ ./bin/server
server is running!
buff=hello world
buff=hello world

$ ./bin/client 10.32.49.10 7092
$ ./bin/client 10.32.49.10 7092

无阻塞式IO:
在一个进程发出IO请求后,不阻塞,如果数据没有准备好,就直接返回错误码,如图:

可以通过fcntl控制socket描述符属性。
int flags;
flag=fcntl(sockfd,F_GETFL,0);
fcntl(sockfd,F_SETFL,flag|O_NONBLOCK)

非阻塞式I/O模型对4种I/O操作返回的错误
读操作:接收缓冲区无数据时返回EWOULDBLOCK
写操作:发送缓冲区无空间时返回EWOULDBLOCK;空间不够时部分拷贝,返回实际拷贝字节数
建立连接:启动3次握手,立刻返回错误EINPROGRESS;服务器客户端在同一主机上connect立即返回成功
接受连接:没有新连接返回EWOULDBLOCK

代码:
server端:
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

int main()
{
	int sockfd, new_fd;
	int sin_size;
	struct sockaddr_in addr, cliaddr;
	
	//创建socket
	if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
	{
		perror("createSocket");
		return -1;
	}
	
	//初始化socket结构
	memset(&addr, 0, sizeof(addr));
	addr.sin_family = AF_INET;
	addr.sin_port = htons(7092);
	addr.sin_addr.s_addr = htonl(INADDR_ANY);
	
	//绑定套接口
	if(bind(sockfd,(struct sockaddr *)&addr,sizeof(struct sockaddr))==-1)
	{
		perror("bind");
		return -1;
	}
	
	//创建监听套接口
	if(listen(sockfd,10)==-1)
	{
		perror("listen");
		return -1;
	}
	
	printf("server is running!\n");
	
	char buff[1024];
	//等待连接
	while(1) 
	{
		sin_size = sizeof(struct sockaddr_in);
		
		//接受连接
		if((new_fd = accept(sockfd, (struct sockaddr *)&cliaddr, (socklen_t*)&sin_size))==-1)
		{
			perror("accept");
			return -1;
		}
			
		//生成一个子进程来完成和客户端的会话,父进程继续监听
		if(!fork())
		{
			//设置new_fd无阻塞属性
			int flags;
			if((flags=fcntl(new_fd, F_GETFL, 0))<0)  
            {
            	perror("fcntl F_GETFL");  
            }
    	    flags |= O_NONBLOCK;  
      		if(fcntl(new_fd, F_SETFL,flags)<0)  
            {
            	perror("fcntl F_SETFL");  
			}
			
			//读取客户端发来的信息
			memset(buff,0,sizeof(buff));
			while(1)
			{
				if((recv(new_fd,buff,sizeof(buff),0)) < 0)
				{
					if(errno==EWOULDBLOCK)
					{
						perror("recv error, wait....");
						sleep(1);
						continue;
					}
				}
				else
				{
					printf("buff=%s\n",buff);
				}	
				break;
			}

			//发送数据
			while(1)
			{
				if(send(new_fd,buff,strlen(buff),0) < 0)
				{
					if(errno==EWOULDBLOCK)
					{
						perror("send error, wait....");
						sleep(1);
						continue;
					}
				}
				else
				{
					printf("buff=%s\n",buff);
				}	
				break;
			}
	
			close(new_fd);
			return 0;
		}
		//父进程关闭new_fd
		close(new_fd);
	}
	close(sockfd);
}

client端:
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

int main(int argc,char *argv[])
{
	if(argc!=3)
	{
		printf("%s: input IP & port\n",argv[0]);
		return 1;
	}
	int sockfd,numbytes;
	char buf[100] = "hello world";
	struct hostent *he;
	struct sockaddr_in their_addr;
	
	//将基本名字和地址转换
	he = gethostbyname(argv[1]);
	
	//建立一个TCP套接口
	if((sockfd = socket(AF_INET,SOCK_STREAM,0))==-1)
	{
		perror("socket");
		exit(1);
	}
	
	//初始化结构体
	their_addr.sin_family = AF_INET;
	their_addr.sin_port = htons(atoi(argv[2]));
	their_addr.sin_addr = *((struct in_addr *)he->h_addr);
	bzero(&(their_addr.sin_zero),8);
	
	//和服务器建立连接
	if(connect(sockfd,(struct sockaddr *)&their_addr,sizeof(struct sockaddr))==-1)
	{
		perror("connect");
		exit(1);
	}

	sleep(5);
	
	//向服务器发送字符串
	if(send(sockfd,buf,strlen(buf),0)==-1)
	{
		perror("send");
		exit(1);
	}
	memset(buf,0,sizeof(buf));
	
	
	sleep(5);
	
	//接受从服务器返回的信息
	if((numbytes = recv(sockfd,buf,100,0))==-1)
	{
		perror("recv");
		exit(1);
	}
	
	close(sockfd);
	return 0;
}

运行:
$ ./bin/server
server is running!
recv error, wait....: Resource temporarily unavailable
recv error, wait....: Resource temporarily unavailable
recv error, wait....: Resource temporarily unavailable
recv error, wait....: Resource temporarily unavailable
recv error, wait....: Resource temporarily unavailable
buff=hello world
buff=hello world

$ ./bin/client 10.32.49.10 7092

IO复用:
IO复用阻塞在select、poll或epoll这样的系统调用上,通过这种方式,在不使用多线程的前提下,单个进程可以同时处理多个网络连接的IO。如图:

代码
sever端:
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define MAXEVENT 1024

int create_server_socket(int& sockfd)
{
	struct sockaddr_in addr;
	
	//创建socket
	if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
	{
		perror("createSocket");
		return -1;
	}
	
	//初始化socket结构
	memset(&addr, 0, sizeof(addr));
	addr.sin_family = AF_INET;
	addr.sin_port = htons(7092);
	addr.sin_addr.s_addr = htonl(INADDR_ANY);
	
	//绑定套接口
	if(bind(sockfd,(struct sockaddr *)&addr,sizeof(struct sockaddr))==-1)
	{
		perror("bind");
		return -1;
	}
	
	//创建监听套接口
	if(listen(sockfd,10)==-1)
	{
		perror("listen");
		return -1;
	}
	
	return 0;	
}

int set_socket_non_blocking(int fd)
{
	int flags, s;
	
	flags = fcntl (fd, F_GETFL, 0);
	if (flags == -1)
	{
		perror ("fcntl F_GETFL failed");
		return -1;
	}
	
	flags |= O_NONBLOCK;
	s = fcntl (fd, F_SETFL, flags);
	if (s == -1)
	{
		perror ("fcntl F_SETFL failed");
		return -1;
	}
	
	return 0;
}

int main()
{
	int sockfd, efd;
	struct epoll_event event;
	struct epoll_event *events;	
	int s;
	
	if(create_server_socket(sockfd) != 0)
	{
		perror("create server sock failed\n");
		return 1;
	}
	set_socket_non_blocking(sockfd);
	
	printf("server is running!\n");

	//创建一个epoll的句柄
	//int epoll_create(int size)  
	//Since Linux 2.6.8, the size argument is unused. (The kernel dynamically sizes the required data structures without needing this initial hint.)
	efd = epoll_create(MAXEVENT);
	if (efd == -1)
	{
		perror ("epoll_create");
		abort ();
	}

	//注册新事件到epoll efd
	event.data.fd = sockfd;
	event.events = EPOLLIN | EPOLLET;
	s = epoll_ctl(efd, EPOLL_CTL_ADD, sockfd, &event);
	if (s == -1)
	{
		perror ("epoll_ctl EPOLL_CTL_ADD failed");
		abort ();
	}
	
	events = (epoll_event*)calloc(MAXEVENT, sizeof(event));
	
	while (1)
	{
		int n, i;
		n = epoll_wait(efd, events, MAXEVENT, -1);
		for (i = 0; i < n; i++)
		{
    		//fd error
      		if ((events[i].events & EPOLLERR) ||
              	(events[i].events & EPOLLHUP) ||
              (!(events[i].events & EPOLLIN)))
        	{
				perror("epoll error\n");
				close (events[i].data.fd);
				continue;
			}
			//新连接
      		else if (sockfd == events[i].data.fd)
       		{
				while (1)
				{
					struct sockaddr in_addr;
					socklen_t in_len;
					int infd;
					char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];
					
					//接受连接
					in_len = sizeof(in_addr);
					infd = accept(sockfd, &in_addr, &in_len);
					if (infd == -1)
					{
						if ((errno == EAGAIN) ||
						  (errno == EWOULDBLOCK))
						{
							//已接受所有连接
					      	break;
					    }
						else
						{
							perror ("accept");
							break;
						}
					}
					
					s = getnameinfo (&in_addr, in_len,
					               hbuf, sizeof hbuf,
					               sbuf, sizeof sbuf,
					               NI_NUMERICHOST | NI_NUMERICSERV);
					if (s == 0)
					{
					  printf("Accepted connection on descriptor %d "
					         "(host=%s, port=%s)\n", infd, hbuf, sbuf);
					}
					
					/* 设置新接受的socket连接无阻塞*/
					s = set_socket_non_blocking (infd);
					if (s == -1)
					{
					return 1;
					}
					
					//注册新事件到epoll
					event.data.fd = infd;
					event.events = EPOLLIN | EPOLLET;
					s = epoll_ctl(efd, EPOLL_CTL_ADD, infd, &event);
					if (s == -1)
					{
					  perror ("epoll_ctl");
					  return 1;
					}
				}
				continue;
            }
            //数据可读
          	else
            {
              int done = 0;
              while (1)
              {
                  ssize_t count;
                  char buf[512];
                  count = read(events[i].data.fd, buf, sizeof(buf));
                  if(count == -1)
                  {
                      //数据读完
                      if (errno != EAGAIN)
                      {
                          perror ("read");
                          done = 1;
                      }
                      break;
                  }
                  else if(count == 0)
                  {
                      /* End of file. The remote has closed the
                         connection. */
                      done = 1;
                      break;
                   }

                  printf("recv: %s\n", buf);
                }

              if (done)
              {
                  printf ("Closed connection on descriptor %d\n", events[i].data.fd);
                  close (events[i].data.fd);
              }
            }
        }
    }

  free (events);
  close(sockfd);
  return 0;
}
client端:
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

int main(int argc,char *argv[])
{
	if(argc!=3)
	{
		printf("%s: input IP & port\n",argv[0]);
		return 1;
	}
	int sockfd,numbytes;
	char buf[100] = "hello world";
	struct hostent *he;
	struct sockaddr_in their_addr;
	
	//将基本名字和地址转换
	he = gethostbyname(argv[1]);
	
	//建立一个TCP套接口
	if((sockfd = socket(AF_INET,SOCK_STREAM,0))==-1)
	{
		perror("socket");
		exit(1);
	}
	
	//初始化结构体
	their_addr.sin_family = AF_INET;
	their_addr.sin_port = htons(atoi(argv[2]));
	their_addr.sin_addr = *((struct in_addr *)he->h_addr);
	bzero(&(their_addr.sin_zero),8);
	
	//和服务器建立连接
	if(connect(sockfd,(struct sockaddr *)&their_addr,sizeof(struct sockaddr))==-1)
	{
		perror("connect");
		exit(1);
	}

	
	//向服务器发送字符串
	while(1)
	{
		if(send(sockfd,buf,strlen(buf),0)==-1)
		{
			perror("send");
			exit(1);
		}
		sleep(2);
	}
	memset(buf,0,sizeof(buf));
	
	close(sockfd);
	return 0;
}

运行:
$ ./bin/server    
server is running!
Accepted connection on descriptor 5 (host=10.32.49.10, port=39001)
recv: hello world
recv: hello world
recv: hello world
recv: hello world

./bin/client 10.32.49.10 7092

异步IO:
在一个进程发出IO请求后直接返回,内核在整个操作(包括将数据复制到进程缓冲区)完成后通知进程,如图:

代码
server端:
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define BUF_SIZE 1024


void aio_completion_handler(sigval_t sigval);

void setup_io(int fd, aiocb& my_aiocb)
{
	//初始化AIO请求
	bzero( (char *)&my_aiocb, sizeof(struct aiocb) );
	my_aiocb.aio_fildes = fd;
	my_aiocb.aio_buf = malloc(BUF_SIZE+1);
	my_aiocb.aio_nbytes = BUF_SIZE;
	my_aiocb.aio_offset = 0;
	
	//设置线程回调函数
	my_aiocb.aio_sigevent.sigev_notify = SIGEV_THREAD;
	my_aiocb.aio_sigevent.sigev_notify_function = aio_completion_handler;
	my_aiocb.aio_sigevent.sigev_notify_attributes = NULL;
	my_aiocb.aio_sigevent.sigev_value.sival_ptr = &my_aiocb;
}

//回调函数
void aio_completion_handler(sigval_t sigval)
{
	struct aiocb *req;
	int ret;
	
	req = (struct aiocb *)sigval.sival_ptr;
	
	if (aio_error(req) == 0) 
	{
		if((ret = aio_return(req)) > 0)
		{
			printf("Thread id %u recv:%s\n", (unsigned int)pthread_self(), (char*)req->aio_buf);
		}
	}

	char* buf = (char*)req->aio_buf;
	
	if(send(req->aio_fildes, buf, strlen(buf), 0) == -1)
	{
		perror("send");
		return;
	}

	close(req->aio_fildes);

	return;
}

int main()
{
	int sockfd;
	int sin_size;
	struct sockaddr_in addr, cliaddr;
	
	//创建socket
	if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
	{
		perror("createSocket");
		return -1;
	}
	
	//初始化socket结构
	memset(&addr, 0, sizeof(addr));
	addr.sin_family = AF_INET;
	addr.sin_port = htons(7092);
	addr.sin_addr.s_addr = htonl(INADDR_ANY);
	
	//绑定套接口
	if(bind(sockfd,(struct sockaddr *)&addr,sizeof(struct sockaddr))==-1)
	{
		perror("bind");
		return -1;
	}
	
	//创建监听套接口
	if(listen(sockfd,10)==-1)
	{
		perror("listen");
		return -1;
	}
	
	
	printf("server is running!\n");
	
	//等待连接
	while(1) 
	{
		int new_fd;
  		struct aiocb my_aiocb;
		sin_size = sizeof(struct sockaddr_in);
		
		//接受连接
		if((new_fd = accept(sockfd, (struct sockaddr *)&cliaddr, (socklen_t*)&sin_size))==-1)
		{
			perror("accept");
			return -1;
		}

		printf("Thread id %u accept connect, fd: %d\n", (unsigned int)pthread_self(), new_fd);
		
		setup_io(new_fd, my_aiocb);
		aio_read(&my_aiocb);
	}
	close(sockfd);
}

client端:
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

int main(int argc,char *argv[])
{
	if(argc!=3)
	{
		printf("%s: input IP & port\n",argv[0]);
		return 1;
	}
	int sockfd,numbytes;
	char buf[100] = "hello world";
	struct hostent *he;
	struct sockaddr_in their_addr;
	
	//将基本名字和地址转换
	he = gethostbyname(argv[1]);
	
	//建立一个TCP套接口
	if((sockfd = socket(AF_INET,SOCK_STREAM,0))==-1)
	{
		perror("socket");
		exit(1);
	}
	
	//初始化结构体
	their_addr.sin_family = AF_INET;
	their_addr.sin_port = htons(atoi(argv[2]));
	their_addr.sin_addr = *((struct in_addr *)he->h_addr);
	bzero(&(their_addr.sin_zero),8);
	
	//和服务器建立连接
	if(connect(sockfd,(struct sockaddr *)&their_addr,sizeof(struct sockaddr))==-1)
	{
		perror("connect");
		exit(1);
	}

	
	//向服务器发送字符串
	if(send(sockfd,buf,strlen(buf),0)==-1)
	{
		perror("send");
		exit(1);
	}
 
        //接收数据
	if((numbytes = recv(sockfd, buf, 100, 0)) == -1)
	{
		perror("recv");
		return 1;
	}

	printf("recv: %s\n", buf);
	
	close(sockfd);
	return 0;
}

运行:
$ ./bin/server
server is running!
Thread id 2505492000 accept connect, fd: 4
Thread id 1084246368 recv:hello world
(注意:线程ID不一样)

$ ./bin/client 10.32.49.10 7092
recv: hello world


信号驱动IO:
使用信号驱动I/O时,当网络套接字可读后,内核通过发送 SIGIO信号通知应用进程,于是应用可以开始读取数据。如图:

为了让套接字描述符可以工作于信号驱动I/O模式,应用进程必须完成如下三步设置:
1.注册SIGIO信号处理程序。(安装信号处理器)
2.使用fcntl的F_SETOWN命令,设置套接字所有者。(设置套接字的所有者)
3.使用fcntl的F_SETFL命令,置O_ASYNC标志,允许套接字信号驱动I/O。(允许这个套接字进行信号输入输出)
注意,必须保证在设置套接字所有者之前,向系统注册信号处理程序,否则就有可能在fcntl调用后,信号处理程序注册前内核向应用交付SIGIO信号,导致应用丢失此信号。

在UDP编程中使用信号驱动I/O,此时SIGIO信号产生于下面两种情况:
套接字收到一个数据报。
套接字上发生了异步错误。
因此,当应用因为收到一个UDP数据报而产生的SIGIO时,要么可以调用recvfrom读取该数据报,要么得到一个异步错误。
对于TCP编程,信号驱动I/O就没有太大意义了,因为对于流式套接字而言,有很多情况都可以导致SIGIO产生,而应用又无法区分是什么具体情况导致该信号产生的
信号驱动IO模型在网络编程中极少使用,这里不写例子了,有兴趣的同学可以参考: http://blog.csdn.net/yskcg/article/details/6021275

例子源码打包下载:
http://download.csdn.net/detail/yfkiss/4288465

reference:
UNIX网络编程,第一卷
Linux下 fcntl 函数用法说明
Linux Epoll详解
使用异步 I/O 大大提高应用程序的性能
信号驱动IO

你可能感兴趣的:(网络编程,Program,网络编程)