SpringBoot开发案例之整合Kafka实现消息队列

前言
最近在做一款秒杀的案例,涉及到了同步锁、数据库锁、分布式锁、进程内队列以及分布式消息队列,这里对SpringBoot集成Kafka实现消息队列做一个简单的记录。

Kafka简介
Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。

Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:

通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。

SpringBoot开发案例之整合Kafka实现消息队列_第1张图片

高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
支持通过Kafka服务器和消费机集群来分区消息。
支持Hadoop并行数据加载。
kafka_diagram.png
kafka_diagram.png

术语介绍
Broker
Kafka集群包含一个或多个服务器,这种服务器被称为broker
Topic
每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)
Partition
Partition是物理上的概念,每个Topic包含一个或多个Partition.
Producer
负责发布消息到Kafka broker
Consumer
消息消费者,向Kafka broker读取消息的客户端。
Consumer Group
每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。
Kafka安装
Kafka需要依赖JAVA环境运行,如何安装JDK这里不做介绍。

下载kafka:

wget http://mirror.bit.edu.cn/apache/kafka/1.1.0/kafka_2.11-1.1.0.tgz
将包下载到执行目录并解压:

cd /usr/local/
tar -xzvf kafka_2.11-0.10.0.1.tgz
修改kafka配置文件:

cd kafka_2.11-0.10.0.1/config/
#编辑配置文件
vi server.properties
broker.id=0
#端口号、记得开启端口,云服务器要开放安全组
port=9092
#服务器IP地址,修改为自己的服务器IP
host.name=127.0.0.1
#zookeeper地址和端口, Kafka支持内置的Zookeeper和引用外部的Zookeeper
zookeeper.connect=localhost:2181
分别启动 kafka 和 zookeeper:

./zookeeper-server-start.sh /usr/local/kafka_2.11-0.10.0.1/config/zookeeper.properties &
./kafka-server-start.sh /usr/local/kafka_2.11-0.10.0.1/config/server.properties &
SpringBoot集成
pom.xml引入:

`
    org.springframework.kafka
    spring-kafka
    1.3.5.RELEASE

application.properties配置:

#kafka相关配置
spring.kafka.bootstrap-servers=192.168.1.180:9092
#设置一个默认组
spring.kafka.consumer.group-id=0
#key-value序列化反序列化
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
#每次批量发送消息的数量
spring.kafka.producer.batch-size=65536
spring.kafka.producer.buffer-memory=524288

生产者

import java.util.HashMap;
import java.util.Map;

import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
/**
 * 生产者
 * 创建者 科帮网
 * 创建时间    2018年2月4日
 */
@Configuration
@EnableKafka
public class KafkaProducerConfig {

    @Value("${kafka.producer.servers}")
    private String servers;
    @Value("${kafka.producer.retries}")
    private int retries;
    @Value("${kafka.producer.batch.size}")
    private int batchSize;
    @Value("${kafka.producer.linger}")
    private int linger;
    @Value("${kafka.producer.buffer.memory}")
    private int bufferMemory;


    public Map producerConfigs() {
        Map props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
        props.put(ProducerConfig.RETRIES_CONFIG, retries);
        props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize);
        props.put(ProducerConfig.LINGER_MS_CONFIG, linger);
        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }

    public ProducerFactory producerFactory() {
        return new DefaultKafkaProducerFactory<>(producerConfigs());
    }

    @Bean
    public KafkaTemplate kafkaTemplate() {
        return new KafkaTemplate(producerFactory());
    }
}

消费者

mport java.util.HashMap;
import java.util.Map;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
/**
 * 消费者
 * 创建者 科帮网
 * 创建时间    2018年2月4日
 */
@Configuration
@EnableKafka
public class KafkaConsumerConfig {
    @Value("${kafka.consumer.servers}")
    private String servers;
    @Value("${kafka.consumer.enable.auto.commit}")
    private boolean enableAutoCommit;
    @Value("${kafka.consumer.session.timeout}")
    private String sessionTimeout;
    @Value("${kafka.consumer.auto.commit.interval}")
    private String autoCommitInterval;
    @Value("${kafka.consumer.group.id}")
    private String groupId;
    @Value("${kafka.consumer.auto.offset.reset}")
    private String autoOffsetReset;
    @Value("${kafka.consumer.concurrency}")
    private int concurrency;
    @Bean
    public KafkaListenerContainerFactory> kafkaListenerContainerFactory() {
        ConcurrentKafkaListenerContainerFactory factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory());
        factory.setConcurrency(concurrency);
        factory.getContainerProperties().setPollTimeout(1500);
        return factory;
    }

    public ConsumerFactory consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }


    public Map consumerConfigs() {
        Map propsMap = new HashMap<>();
        propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
        propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, enableAutoCommit);
        propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, autoCommitInterval);
        propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, sessionTimeout);
        propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
        propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset);
        return propsMap;
    }

    @Bean
    public Listener listener() {
        return new Listener();
    }
}

日志监听

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;

import com.itstyle.es.common.utils.JsonMapper;
import com.itstyle.es.log.entity.SysLogs;
import com.itstyle.es.log.repository.ElasticLogRepository;
/**
 * 扫描监听
 * 创建者 科帮网
 * 创建时间    2018年2月4日
 */
@Component
public class Listener {
    protected final Logger logger = LoggerFactory.getLogger(this.getClass());
    
    @Autowired
    private  ElasticLogRepository elasticLogRepository;
    
    @KafkaListener(topics = {"itstyle"})
    public void listen(ConsumerRecord record) {
        logger.info("kafka的key: " + record.key());
        logger.info("kafka的value: " + record.value());
        if(record.key().equals("itstyle_log")){
            try {
                SysLogs log = JsonMapper.fromJsonString(record.value().toString(), SysLogs.class);
                logger.info("kafka保存日志: " + log.getUsername());
                elasticLogRepository.save(log);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
}

测试日志传输

  /**
    * kafka 日志队列测试接口
    */
   @GetMapping(value="kafkaLog")
   public @ResponseBody String kafkaLog() {
        SysLogs log = new SysLogs();
        log.setUsername("红薯");
        log.setOperation("开源中国社区");
        log.setMethod("com.itstyle.es.log.controller.kafkaLog()");
        log.setIp("192.168.1.80");
        log.setGmtCreate(new Timestamp(new Date().getTime()));
        log.setExceptionDetail("开源中国社区");
        log.setParams("{'name':'码云','type':'开源'}");
        log.setDeviceType((short)1);
        log.setPlatFrom((short)1);
        log.setLogType((short)1);
        log.setDeviceType((short)1);
        log.setId((long)200000);
        log.setUserId((long)1);
        log.setTime((long)1);
        //模拟日志队列实现
        String json = JsonMapper.toJsonString(log);
        kafkaTemplate.send("itstyle", "itstyle_log",json);
        return "success";
   }

生产者KafkaSender:

/**

  • 生产者

  • @author 科帮网 By https://blog.52itstyle.vip
    */
    @Component
    public class KafkaSender {
    @Autowired
    private KafkaTemplate kafkaTemplate;

    /**

    • 发送消息到kafka
      */
      public void sendChannelMess(String channel, String message){
      kafkaTemplate.send(channel,message);
      }
      }
      消费者:

/**

  • 消费者 spring-kafka 2.0 + 依赖JDK8
  • @author 科帮网 By https://blog.52itstyle.vip
    /
    @Component
    public class KafkaConsumer {
    /
    *
    • 监听seckill主题,有消息就读取
    • @param message
      */
      @KafkaListener(topics = {“seckill”})
      public void receiveMessage(String message){
      //收到通道的消息之后执行秒杀操作
      }
      }
      Kafka与Redis
      之前简单的介绍过,JavaWeb项目架构之Redis分布式日志队列,有小伙伴们聊到, Redis PUB/SUB没有任何可靠性保障,也不会持久化。当然了,原项目中仅仅是记录日志,并不是十分重要的信息,可以有一定程度上的丢失

Kafka与Redis PUB/SUB之间最大的区别在于Kafka是一个完整的分布式发布订阅消息系统,而Redis PUB/SUB只是一个组件而已。

使用场景
Redis PUB/SUB
消息持久性需求不高、吞吐量要求不高、可以忍受数据丢失
Kafka
高可用、高吞吐、持久性、多样化的消费处理模型

你可能感兴趣的:(学习)