Redis 常见的错误(坑)

从redis 的设计规范、命令的使用、分布式场景的使用、集群 等角度来说说常见的坑。

目录

Bigkey问题:

bigkey是指某个key所对应的值过大,如string 应该控制在10kb,hash、list、set、zset元素不要超过2000个

防止在高并发场景下查询流量过大导致慢查询、占用网卡流量、导致redis 阻塞。

若确实存在bigkey要注意:不要使用del删除,使用hscan、sscan、zscan方式渐进式删除,同时要注意防止bigkey过期时间自动删除问题(例如一个200万的zset设置1小时过期,会触发del操作,造成阻塞,而且该操作不会不出现在慢查询中(latency可查))

控制key的生命周期

建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期),不过期的数据重点关注idletime。

O(N)命令关注N的数量

例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。有遍历的需求可以使用hscan、sscan、zscan代替。

禁用的命令

禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的方式渐进式处理。

使用批量操作提高效率

  1. 原生命令:例如mget、mset。

  2. 非原生命令:可以使用pipeline提高效率。

  1. 1. 原生是原子操作,pipeline是非原子操作。

  2. 2. pipeline可以打包不同的命令,原生做不到

  3. 3. pipeline需要客户端和服务端同时支持。

Redis事务功能较弱,不建议过多使用

MULTI  开始一个事务,EXEC 触发这个事务

单个 Redis 命令的执行是原子性的,但 Redis 没有在事务上增加任何维持原子性的机制,所以 Redis 事务的执行并不是原子性的。事务可以理解为一个打包的批量执行脚本,但批量指令并非原子化的操作,中间某条指令的失败不会导致前面已做指令的回滚,也不会造成后续的指令不做。

redis 127.0.0.1:7000> multi
OK
redis 127.0.0.1:7000> set a aaa
QUEUED
redis 127.0.0.1:7000> set b bbb
QUEUED
redis 127.0.0.1:7000> set c ccc
QUEUED
redis 127.0.0.1:7000> exec
1) OK
2) OK
3) OK

如果在 set b bbb 处失败,set a 已成功不会回滚,set c 还会继续执行。

连接池的参数合理设置

资源池大小(maxTotal)、空闲(maxIdle minIdle)设置建议

1.maxTotal:最大连接数

实际上这个是一个很难回答的问题,考虑的因素比较多:

  • 业务希望Redis并发量
  • 客户端执行命令时间
  • Redis资源:例如 nodes(例如应用个数) * maxTotal 是不能超过redis的最大连接数。
  • 资源开销:例如虽然希望控制空闲连接,但是不希望因为连接池的频繁释放创建连接造成不必靠开销。

以一个例子说明,假设:

  • 一次命令时间(borrow|return resource + Jedis执行命令(含网络) )的平均耗时约为1ms,一个连接的QPS大约是1000
  • 业务期望的QPS是50000

那么理论上需要的资源池大小是50000 / 1000 = 50个。但事实上这是个理论值,还要考虑到要比理论值预留一些资源,通常来讲maxTotal可以比理论值大一些。

但这个值不是越大越好,一方面连接太多占用客户端和服务端资源,另一方面对于Redis这种高QPS的服务器,一个大命令的阻塞即使设置再大资源池仍然会无济于事。

2. maxIdle minIdle

maxIdle实际上才是业务需要的最大连接数,maxTotal是为了给出余量,所以maxIdle不要设置过小,否则会有new Jedis(新连接)开销,而minIdle是为了控制空闲资源监测。

连接池的最佳性能是maxTotal = maxIdle ,这样就避免连接池伸缩带来的性能干扰。但是如果并发量不大或者maxTotal设置过高,会导致不必要的连接资源浪费。
可以根据实际总OPS和调用redis客户端的规模整体评估每个节点所使用的连接池。

3.监控

实际上最靠谱的值是通过监控来得到“最佳值”的,可以考虑通过一些手段(例如jmx)实现监控,找到合理值。

 

预热JedisPool

由于一些原因(例如超时时间设置较小原因),有的项目在启动成功后会出现超时。JedisPool定义最大资源数、最小空闲资源数时,不会真的把Jedis连接放到池子里,第一次使用时,池子没有资源使用,会new Jedis,使用后放到池子里,可能会有一定的时间开销,所以也可以考虑在JedisPool定义后,为JedisPool提前进行预热,例如以最小空闲数量为预热数量

锁未被释放

这其实是个低级错误,但又是出现频次很高的错误。例如在处理分布式锁的时候,未释放锁资源。导致redis 线程池打满,导致服务故障。。。

B的锁被A给释放了

我们知道Redis实现锁的原理在于 SETNX命令。当 key不存在时将 key的值设为 value ,返回值为 1;若给定的 key 已经存在,则 SETNX不做任何动作,返回值为 0 。

我们来设想一下这个场景:AB两个线程来尝试给key myLock加锁,A线程先拿到锁(假如锁3秒后过期),B线程就在等待尝试获取锁,到这一点毛病没有。

那如果此时业务逻辑比较耗时,执行时间已经超过redis锁过期时间,这时A线程的锁自动释放(删除key),B线程检测到myLock这个key不存在,执行 SETNX命令也拿到了锁。

但是,此时A线程执行完业务逻辑之后,还是会去释放锁(删除key),这就导致B线程的锁被A线程给释放了。

为避免上边的情况,一般我们在每个线程加锁时要带上自己独有的value值来标识,只释放指定valuekey,否则就会出现释放锁混乱的场景。

数据库事务超时

emm~ 聊redis锁咋还扯到数据库事务上来了?别着急往下看,看下边这段代码:

@Transaction
   public void lock() {
   
        while (true) {
            boolean flag = this.getLock(key);
            if (flag) {
                insert();
            }
        }
    }

 

给这个方法添加一个@Transaction注解开启事务,如代码中抛出异常进行回滚,要知道数据库事务可是有超时时间限制的,并不会无条件的一直等一个耗时的数据库操作。

比如:我们解析一个大文件,再将数据存入到数据库,如果执行时间太长,就会导致事务超时自动回滚。

一旦你的key长时间获取不到锁,获取锁等待的时间远超过数据库事务超时时间,程序就会报异常。

一般为解决这种问题,我们就需要将数据库事务改为手动提交、回滚事务。

   @Autowired
    DataSourceTransactionManager dataSourceTransactionManager;

    @Transaction
    public void lock() {
        //手动开启事务
        TransactionStatus transactionStatus = dataSourceTransactionManager.getTransaction(transactionDefinition);
        try {
            while (true) {
                boolean flag = this.getLock(key);
                if (flag) {
                    insert();
                    //手动提交事务
                    dataSourceTransactionManager.commit(transactionStatus);
                }
            }
        } catch (Exception e) {
            //手动回滚事务
            dataSourceTransactionManager.rollback(transactionStatus);
        }
    }

锁过期了,业务还没执行完(锁续命)

 

这种情况和我们上边提到的第二种比较类似,但解决思路上略有不同。

同样是redis分布式锁过期,而业务逻辑没执行完的场景,不过,这里换一种思路想问题,redis锁的过期时间再弄长点不就解决了吗?

那还是有问题,我们可以在加锁的时候,手动调长redis锁的过期时间,可这个时间多长合适?业务逻辑的执行时间是不可控的,调的过长又会影响操作性能。

要是redis锁的过期时间能够自动续期就好了。

为了解决这个问题我们使用redis客户端redissonredisson很好的解决了redis在分布式环境下的一些棘手问题,它的宗旨就是让使用者减少对Redis的关注,将更多精力用在处理业务逻辑上。

redisson对分布式锁做了很好封装,只需调用API即可。

  RLock lock = redissonClient.getLock("stockLock");

redisson在加锁成功后,会注册一个定时任务监听这个锁,每隔10秒就去查看这个锁,如果还持有锁,就对过期时间进行续期。默认过期时间30秒。这个机制也被叫做:“看门狗”,这名字。。。

举例子:假如加锁的时间是30秒,过10秒检查一次,一旦加锁的业务没有执行完,就会进行一次续期,把锁的过期时间再次重置成30秒。

通过分析下边redisson的源码实现可以发现,不管是加锁解锁续约都是客户端把一些复杂的业务逻辑,通过封装在Lua脚本中发送给redis,保证这段复杂业务逻辑执行的原子性

@Slf4j
@Service
public class RedisDistributionLockPlus {
 
    /**
     * 加锁超时时间,单位毫秒, 即:加锁时间内执行完操作,如果未完成会有并发现象
     */
    private static final long DEFAULT_LOCK_TIMEOUT = 30;
 
    private static final long TIME_SECONDS_FIVE = 5 ;
 
    /**
     * 每个key的过期时间 {@link LockContent}
     */
    private Map lockContentMap = new ConcurrentHashMap<>(512);
 
    /**
     * redis执行成功的返回
     */
    private static final Long EXEC_SUCCESS = 1L;
 
    /**
     * 获取锁lua脚本, k1:获锁key, k2:续约耗时key, arg1:requestId,arg2:超时时间
     */
    private static final String LOCK_SCRIPT = "if redis.call('exists', KEYS[2]) == 1 then ARGV[2] = math.floor(redis.call('get', KEYS[2]) + 10) end " +
            "if redis.call('exists', KEYS[1]) == 0 then " +
               "local t = redis.call('set', KEYS[1], ARGV[1], 'EX', ARGV[2]) " +
               "for k, v in pairs(t) do " +
                 "if v == 'OK' then return tonumber(ARGV[2]) end " +
               "end " +
            "return 0 end";
 
    /**
     * 释放锁lua脚本, k1:获锁key, k2:续约耗时key, arg1:requestId,arg2:业务耗时 arg3: 业务开始设置的timeout
     */
    private static final String UNLOCK_SCRIPT = "if redis.call('get', KEYS[1]) == ARGV[1] then " +
            "local ctime = tonumber(ARGV[2]) " +
            "local biz_timeout = tonumber(ARGV[3]) " +
            "if ctime > 0 then  " +
               "if redis.call('exists', KEYS[2]) == 1 then " +
                   "local avg_time = redis.call('get', KEYS[2]) " +
                   "avg_time = (tonumber(avg_time) * 8 + ctime * 2)/10 " +
                   "if avg_time >= biz_timeout - 5 then redis.call('set', KEYS[2], avg_time, 'EX', 24*60*60) " +
                   "else redis.call('del', KEYS[2]) end " +
               "elseif ctime > biz_timeout -5 then redis.call('set', KEYS[2], ARGV[2], 'EX', 24*60*60) end " +
            "end " +
            "return redis.call('del', KEYS[1]) " +
            "else return 0 end";
    /**
     * 续约lua脚本
     */
    private static final String RENEW_SCRIPT = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('expire', KEYS[1], ARGV[2]) else return 0 end";
 
 
    private final StringRedisTemplate redisTemplate;
 
    public RedisDistributionLockPlus(StringRedisTemplate redisTemplate) {
        this.redisTemplate = redisTemplate;
        ScheduleTask task = new ScheduleTask(this, lockContentMap);
        // 启动定时任务
        ScheduleExecutor.schedule(task, 1, 1, TimeUnit.SECONDS);
    }
 
    /**
     * 加锁
     * 取到锁加锁,取不到锁一直等待知道获得锁
     *
     * @param lockKey
     * @param requestId 全局唯一
     * @param expire   锁过期时间, 单位秒
     * @return
     */
    public boolean lock(String lockKey, String requestId, long expire) {
        log.info("开始执行加锁, lockKey ={}, requestId={}", lockKey, requestId);
        for (; ; ) {
            // 判断是否已经有线程持有锁,减少redis的压力
            LockContent lockContentOld = lockContentMap.get(lockKey);
            boolean unLocked = null == lockContentOld;
            // 如果没有被锁,就获取锁
            if (unLocked) {
                long startTime = System.currentTimeMillis();
                // 计算超时时间
                long bizExpire = expire == 0L ? DEFAULT_LOCK_TIMEOUT : expire;
                String lockKeyRenew = lockKey + "_renew";
 
                RedisScript script = RedisScript.of(LOCK_SCRIPT, Long.class);
                List keys = new ArrayList<>();
                keys.add(lockKey);
                keys.add(lockKeyRenew);
                Long lockExpire = redisTemplate.execute(script, keys, requestId, Long.toString(bizExpire));
                if (null != lockExpire && lockExpire > 0) {
                    // 将锁放入map
                    LockContent lockContent = new LockContent();
                    lockContent.setStartTime(startTime);
                    lockContent.setLockExpire(lockExpire);
                    lockContent.setExpireTime(startTime + lockExpire * 1000);
                    lockContent.setRequestId(requestId);
                    lockContent.setThread(Thread.currentThread());
                    lockContent.setBizExpire(bizExpire);
                    lockContent.setLockCount(1);
                    lockContentMap.put(lockKey, lockContent);
                    log.info("加锁成功, lockKey ={}, requestId={}", lockKey, requestId);
                    return true;
                }
            }
            // 重复获取锁,在线程池中由于线程复用,线程相等并不能确定是该线程的锁
            if (Thread.currentThread() == lockContentOld.getThread()
                      && requestId.equals(lockContentOld.getRequestId())){
                // 计数 +1
                lockContentOld.setLockCount(lockContentOld.getLockCount()+1);
                return true;
            }
 
            // 如果被锁或获取锁失败,则等待100毫秒
            try {
                TimeUnit.MILLISECONDS.sleep(100);
            } catch (InterruptedException e) {
                // 这里用lombok 有问题
                log.error("获取redis 锁失败, lockKey ={}, requestId={}", lockKey, requestId, e);
                return false;
            }
        }
    }
 
 
    /**
     * 解锁
     *
     * @param lockKey
     * @param lockValue
     */
    public boolean unlock(String lockKey, String lockValue) {
        String lockKeyRenew = lockKey + "_renew";
        LockContent lockContent = lockContentMap.get(lockKey);
 
        long consumeTime;
        if (null == lockContent) {
            consumeTime = 0L;
        } else if (lockValue.equals(lockContent.getRequestId())) {
            int lockCount = lockContent.getLockCount();
            // 每次释放锁, 计数 -1,减到0时删除redis上的key
            if (--lockCount > 0) {
                lockContent.setLockCount(lockCount);
                return false;
            }
            consumeTime = (System.currentTimeMillis() - lockContent.getStartTime()) / 1000;
        } else {
            log.info("释放锁失败,不是自己的锁。");
            return false;
        }
 
        // 删除已完成key,先删除本地缓存,减少redis压力, 分布式锁,只有一个,所以这里不加锁
        lockContentMap.remove(lockKey);
 
        RedisScript script = RedisScript.of(UNLOCK_SCRIPT, Long.class);
        List keys = new ArrayList<>();
        keys.add(lockKey);
        keys.add(lockKeyRenew);
 
        Long result = redisTemplate.execute(script, keys, lockValue, Long.toString(consumeTime),
                Long.toString(lockContent.getBizExpire()));
        return EXEC_SUCCESS.equals(result);
 
    }
 
    /**
     * 续约
     *
     * @param lockKey
     * @param lockContent
     * @return true:续约成功,false:续约失败(1、续约期间执行完成,锁被释放 2、不是自己的锁,3、续约期间锁过期了(未解决))
     */
    public boolean renew(String lockKey, LockContent lockContent) {
 
        // 检测执行业务线程的状态
        Thread.State state = lockContent.getThread().getState();
        if (Thread.State.TERMINATED == state) {
            log.info("执行业务的线程已终止,不再续约 lockKey ={}, lockContent={}", lockKey, lockContent);
            return false;
        }
 
        String requestId = lockContent.getRequestId();
        long timeOut = (lockContent.getExpireTime() - lockContent.getStartTime()) / 1000;
 
        RedisScript script = RedisScript.of(RENEW_SCRIPT, Long.class);
        List keys = new ArrayList<>();
        keys.add(lockKey);
 
        Long result = redisTemplate.execute(script, keys, requestId, Long.toString(timeOut));
        log.info("续约结果,True成功,False失败 lockKey ={}, result={}", lockKey, EXEC_SUCCESS.equals(result));
        return EXEC_SUCCESS.equals(result);
    }
 
 
    static class ScheduleExecutor {
 
        public static void schedule(ScheduleTask task, long initialDelay, long period, TimeUnit unit) {
            long delay = unit.toMillis(initialDelay);
            long period_ = unit.toMillis(period);
            // 定时执行
            new Timer("Lock-Renew-Task").schedule(task, delay, period_);
        }
    }
 
    static class ScheduleTask extends TimerTask {
 
        private final RedisDistributionLockPlus redisDistributionLock;
        private final Map lockContentMap;
 
        public ScheduleTask(RedisDistributionLockPlus redisDistributionLock, Map lockContentMap) {
            this.redisDistributionLock = redisDistributionLock;
            this.lockContentMap = lockContentMap;
        }
 
        @Override
        public void run() {
            if (lockContentMap.isEmpty()) {
                return;
            }
            Set> entries = lockContentMap.entrySet();
            for (Map.Entry entry : entries) {
                String lockKey = entry.getKey();
                LockContent lockContent = entry.getValue();
                long expireTime = lockContent.getExpireTime();
                // 减少线程池中任务数量
                if ((expireTime - System.currentTimeMillis())/ 1000 < TIME_SECONDS_FIVE) {
                    //线程池异步续约
                    ThreadPool.submit(() -> {
                        boolean renew = redisDistributionLock.renew(lockKey, lockContent);
                        if (renew) {
                            long expireTimeNew = lockContent.getStartTime() + (expireTime - lockContent.getStartTime()) * 2 - TIME_SECONDS_FIVE * 1000;
                            lockContent.setExpireTime(expireTimeNew);
                        } else {
                            // 续约失败,说明已经执行完 OR redis 出现问题
                            lockContentMap.remove(lockKey);
                        }
                    });
                }
            }
        }
    }
}

redis主从复制的坑

 

redis高可用最常见的方案就是主从复制(master-slave),这种模式也给redis分布式锁挖了一坑。

redis cluster集群环境下,假如现在A客户端想要加锁,它会根据路由规则选择一台master节点写入key mylock,在加锁成功后,master节点会把key异步复制给对应的slave节点。

如果此时redis master节点宕机,为保证集群可用性,会进行主备切换slave变为了redis masterB客户端在新的master节点上加锁成功,而A客户端也以为自己还是成功加了锁的。

此时就会导致同一时间内多个客户端对一个分布式锁完成了加锁,导致各种脏数据的产生。

至于解决办法嘛,目前看还没有什么根治的方法,只能尽量保证机器的稳定性,减少发生此事件的概率。


你可能感兴趣的:(Java,Redis,分布式专题)