暑假篇——NOIP2017模拟赛题解

目录

一.优雅的序列

1.题目

2.题解 

3.Code

二.甲虫入侵

1.题目

2.题解 

3.Code

三.大逃亡

1.题目

2.题解 

3.Code

 

谢谢!


虽然三道题上了200,但还是有点菜

一.优雅的序列

1.题目

点击打开链接

2.题解 

这道题难就难在重复的数字上,如果没有重复的数字,直接n-1。

不难发现,越小的数越要往前面放,但是又为了尽量避免重复,我们就轮换着放,比如:

1 1 1 2 3 4 4 4 5

就应该变成:

1 2 3 4 5 1 4 1 4

这样就能保证有最多对a[i] < a[i + 1];

具体实践如下:

step1:把每个数字排序后的起点和重复数量存在一个pair数组内;

step2:用len表示最后排好的数组长度,每次枚举每一个数字,直到枚举完每一个数字为止。

step3:统计满足条件的i的个数。

3.Code

#include 
#include 
#include 
#include 
using namespace std;
#define LL long long
int n, k, len;
LL a[100005], ans, a1[100005];
pair  p[100005];
int main (){
	//freopen ("grace.in", "r", stdin);
	//freopen ("grace.out", "w", stdout);
	scanf ("%d", &n);
	for (register int i = 1; i <= n; i ++)
		scanf ("%lld", &a[i]);
	sort (a + 1, a + 1 + n);
	for (register int i = 2; i <= n; i ++){
		if (a[i] == a[i - 1]){
			int j;
			for (j = i; j <= n; j ++)
				if (a[j] != a[j - 1])
					break;
			p[++ k].first = i - 1;
			p[k].second = j - i + 1;
			i = j;
		}
		else{
			p[++ k].first = i - 1;
			p[k].second = 1;
		}
	}
	if (a[n] != a[n - 1]){
		p[++ k].first = n;
		p[k].second = 1;
	}
	while (len < n){
		for (register int i = 1; i <= k; i ++){
			if (p[i].second){
				a1[++ len] = a[p[i].first];
				p[i].first ++;
				p[i].second --;
			}
		}
	}
	for (register int i = 1; i <= len; i ++)
		if (a1[i] < a1[i + 1])
			ans ++;
	printf ("%lld\n", ans);
	return 0;
}

二.甲虫入侵

1.题目

点击打开链接

2.题解 

这道题是整个最难的题目,要用离散化+暴力搜索

首先输入时可以把每次移动看做一个点,起点是(0,0)例如:样例第一个就是:(8,0)

每次移动要存入两个点,这是为后面的离散化做准备的;

然后,对于我们存入的每一个点,我们要进行去重操作(里面要排序),横坐标和纵坐标分别进行。

接着就进行离散化,我存入的每一个点都对应他们自己的一个下标,就可以用这些下标表示他们的值,一共只有1000个点,离散化之后整个的空间就变成了2000。

然后再来标记农夫走过的田地,这里我们用upper_bound找到农夫每次走之后的坐标离散化之后的下标,把洒过农药的田地标为1。

接着暴力搜索一波,把甲虫能到的位置标为-1;

最后就是统计面积,我们先来看一看离散化之后农场的样子:(标黄的是我们要求的不被甲虫侵犯的面积)

暑假篇——NOIP2017模拟赛题解_第1张图片

相当于每一个点都被我扩散成了两个点,那么面积的求法就是1 * 4 + (x2 - x1 - 1) * (y1 - y2 + 1) + (y1 - y2 - 1) * (x2 - x1 + 1);

就这样求面积就完了。

有点懵,上代码:

3.Code

#include 
#include 
#include 
#include 
using namespace std;
#define LL long long
#define M 2005
int n, len[M], cntx, cnty, curx, cury, realx[M], realy[M], vis[M][M];
char dir[M];
int d[4][2] = {{1, 0}, {-1, 0}, {0, -1}, {0, 1}};
LL ans;
void unique (int *x, int &cnt){
	sort (x, x + cnt);
	int cnt1 = 1;
	for (int i = 1; i < cnt; i ++)
		if (x[i] != x[i - 1])
			x[cnt1 ++] = x[i];
	cnt = cnt1; 
}
bool pd (int tox, int toy){
	if (tox < 0 || tox >= cntx || toy < 0 || toy >= cnty || vis[tox][toy])
		return 0;
	return 1;
}
void DFS (int x, int y){
	vis[x][y] = -1;
	for (int i = 0; i < 4; i ++){
		int tox = x + d[i][0];
		int toy = y + d[i][1];
		if (pd (tox, toy))
			DFS (tox, toy);
	}
}
int main (){
	scanf ("%d", &n);
	for (int i = 1; i <= n; i ++){
		scanf ("\n%c %d", &dir[i], &len[i]);
		if (dir[i] == 'L'){
			realx[cntx ++] = curx + 1;
			realy[cnty ++] = cury;
			realx[cntx ++] = curx -= len[i];
			realy[cnty ++] = cury + 1;
		}
		if (dir[i] == 'R'){
			realx[cntx ++] = curx;
			realy[cnty ++] = cury;
			realx[cntx ++] = (curx += len[i]) + 1;
			realy[cnty ++] = cury + 1;
		}
		if (dir[i] == 'U'){
			realx[cntx ++] = curx;
			realy[cnty ++] = cury;
			realx[cntx ++] = curx + 1;
			realy[cnty ++] = (cury += len[i]) + 1;
		}
		if (dir[i] == 'D'){
			realx[cntx ++] = curx;
			realy[cnty ++] = cury + 1;
			realx[cntx ++] = curx + 1;
			realy[cnty ++] = cury -= len[i];
		}
	}
	unique (realx, cntx);
	unique (realy, cnty);
	int Indexx = lower_bound (realx, realx + cntx, curx = 0) - realx, 
		Indexy = lower_bound (realy, realy + cnty, cury = 0) - realy, 
		now;
	for (int i = 1; i <= n; i ++){
		if (dir[i] == 'L'){
			now = lower_bound (realx, realx + cntx, curx -= len[i]) - realx;
			for ( ; Indexx > now; Indexx --)
				vis[Indexx][Indexy] = 1;
		}
		if (dir[i] == 'R'){
			now = lower_bound (realx, realx + cntx, curx += len[i]) - realx;
			for ( ; Indexx < now; Indexx ++)
				vis[Indexx][Indexy] = 1;
		}
		if (dir[i] == 'U'){
			now = lower_bound (realy, realy + cnty, cury += len[i]) - realy;
			for ( ; Indexy < now; Indexy ++)
				vis[Indexx][Indexy] = 1;
		}
		if (dir[i] == 'D'){
			now = lower_bound (realy, realy + cnty, cury -= len[i]) - realy;
			for ( ; Indexy > now; Indexy --)
				vis[Indexx][Indexy] = 1;
		}
	}
	vis[Indexx][Indexy] = 1;
	for (int i = 0; i <= cntx; i ++){
		if (! vis[i][0]) DFS (i, 0);
		if (! vis[i][cnty]) DFS (i, cnty);
	}
	for (int i = 1; i < cnty; i ++){
		if (! vis[0][i]) DFS (0, i);
		if (! vis[cntx][i]) DFS (cntx, i);
	}
	for (int i = 1; i <= cntx; i ++){
		for (int j = 1; j <= cnty; j ++){
			if (~vis[i][j])
				ans += (LL) (realx[i] - realx[i - 1]) * (realy[j] - realy[j - 1]);
		}
	}
	printf ("%lld\n", ans);
	return 0;
}

三.大逃亡

1.题目

点击打开链接

2.题解 

很简单,因为答案具有单调性,直接二分答案,然后暴力搜索检查答案,注意有细节,特别是二分距离有可能是0

3.Code

#include 
#include 
#include 
#include 
using namespace std;
#define M 10005
struct node {
	int xx, yy, step;
	node (){};
	node (int XX, int YY, int STEP){
		xx = XX;
		yy = YY;
		step = STEP;
	}
};
int n, X, Y, sx, sy, tx, ty, dx[M], dy[M], ans1, ans2, dis[1005][1005];
int dir[4][2] = {{1, 0}, {0, -1}, {-1, 0}, {0, 1}};
bool flag[1005][1005], vis[1005][1005];
int fabs (int x){
	if (x < 0)
		return -x;
	return x;
}
bool pd1 (int tox, int toy){
	if (tox < 0 || tox >= X || toy < 0 || toy >= Y || vis[tox][toy])
		return 0;
	return 1;
}
void prepare (){
	queue  Q;
	for (int i = 1; i <= n; i ++)
		Q.push (node (dx[i], dy[i], 0));
	while (! Q.empty ()){
		node f = Q.front ();
		if (! dis[f.xx][f.yy])
			dis[f.xx][f.yy] = f.step;
		Q.pop ();
		for (int i = 0; i < 4; i ++){
			int tox = f.xx + dir[i][0];
			int toy = f.yy + dir[i][1];
			if (pd1 (tox, toy)){
				vis[tox][toy] = 1;
				Q.push (node (tox, toy, f.step + 1));
			}
		}
	}
}
bool pd (int tox, int toy, int now){
	if (tox < 0 || tox >= X || toy < 0 || toy >= Y || vis[tox][toy] || dis[tox][toy] < now)
		return 0;
	return 1;
}
inline int BFS (int now){
	memset (vis, 0, sizeof vis);
	queue  Q;
	vis[sx][sy] = 1;
	Q.push (node (sx, sy, 0));
	while (! Q.empty ()){
		node f = Q.front ();
		Q.pop ();
		if (f.xx == tx && f.yy == ty)
			return f.step;
		for (register int i = 0; i < 4; i ++){
			int tox = f.xx + dir[i][0];
			int toy = f.yy + dir[i][1];
			if (pd (tox, toy, now)){
				vis[tox][toy] = 1;
				Q.push (node (tox, toy, f.step + 1));
			}
		}
	}
	return -1;
}
inline int check (int now){
	int tmp = BFS (now);
	return tmp;
}
int main (){
	//freopen ("escape.in", "r", stdin);
	//freopen ("escape.out", "w", stdout);
	int l = 0, r = 0x3f3f3f3f, mid;
	scanf ("%d %d %d %d %d %d %d", &n, &X, &Y, &sx, &sy, &tx, &ty);
	for (register int i = 1; i <= n; i ++){
		scanf ("%d %d", &dx[i], &dy[i]);
		r = min (r, fabs (dx[i] - sx) + fabs (dy[i] - sy));
		r = min (r, fabs (dx[i] - tx) + fabs (dy[i] - ty));
	}
	prepare ();
	int tmp;
	while (l + 1 < r){
		mid = (l + r) / 2;
		tmp = check (mid);
		if (tmp != -1){
			l = mid;
		}
		else
			r = mid - 1;
	}
	ans1 = l, ans2 = tmp;
	int tp = check (r);
	if (tp != -1)
		ans1 = r, ans2 = tmp;
	printf ("%d %d\n", ans1, ans2);
	return 0;
}

谢谢!

你可能感兴趣的:(2019暑假篇,二分,搜索)