Elastic:利用 Elastic Stack 来分析浏览器历史访问数据

在今天的文章中,我将展示一个如果使用 Elastic Stack 来对我们的电脑上的浏览数据进行分析。浏览器的历史数据保存于一个叫做 SQLite 的数据库中。下面的所有浏览器将设置和历史记录数据保存到SQLite数据库。

我们可以通过编程的语言把这个数据文件读出来,并变为可以被 Elastic Stack 摄入的文件格式,从而把数据导入到 Elasticsearch 中,并使用 Kibana 对数据进行分析。

整个项目的源码在地址 https://github.com/liu-xiao-guo/elastic-stack-browser-history

 

准备工作

我们首先使用如下的命令把 github 上的代码下载下来:

git clone https://github.com/liu-xiao-guo/elastic-stack-browser-history

然后我们进入到该项目的根目录中:

$ pwd
/Users/liuxg/python/elastic-stack-browser-history
liuxg:elastic-stack-browser-history liuxg$ tree -L 2
.
├── LICENSE
├── README.md
├── docker-compose-ingest.yml
├── docker-compose.yml
├── elastic-stack
│   └── config
├── images
│   ├── BrowserHistory.png
│   ├── BrowserHistoryDashboard.png
│   ├── brave-logo.png
│   ├── chrome-logo.png
│   ├── edge-logo.png
│   ├── edge_logo.png
│   ├── firefox-logo.png
│   └── safari-logo.png
└── scripts
    ├── __pycache__
    ├── browser_history.py
    └── local.py

从上面我们可以看出来有一个叫做 scripts 的子目录,它里面含有一个叫做 browser_history.py 的 python 文件:

browser_history.py

import json
import os
import sqlite3
import time
from local import LOG_DIR
from pathlib import Path

# Update the list based on the Browsers you use
browsers = ['brave','chrome','firefox','safari','edge']

USER_PATH = str(Path.home())

def get_path(browser,browser_params):
    if browser == 'brave':
        BRAVE_PATH = "/Library/Application Support/BraveSoftware/Brave-Browser/Default/History"
        hist_path = USER_PATH + BRAVE_PATH
        hist_sql = "SELECT datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') AS visit_date, url, title AS url_title  FROM urls ORDER BY visit_date DESC"
        browser_params['browser_name'] = browser
        browser_params['hist_path'] = hist_path
        browser_params['hist_sql'] = hist_sql
        return browser_params
    elif browser == 'chrome':
        CHROME_PATH = "/Library/Application Support/Google/Chrome/Default/History"
        hist_path = USER_PATH + CHROME_PATH
        hist_sql = "SELECT datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') AS visit_date, url, title AS url_title  FROM urls ORDER BY visit_date DESC"
        browser_params['browser_name'] = browser
        browser_params['hist_path'] = hist_path
        browser_params['hist_sql'] = hist_sql
        return browser_params
    elif browser == 'edge':
        EDGE_PATH = "/Library/Application Support/Microsoft Edge/Default/History"
        hist_path = USER_PATH + EDGE_PATH
        hist_sql = "SELECT datetime(last_visit_time/1000000-11644473600,'unixepoch','localtime') AS visit_date, url, title AS url_title  FROM urls ORDER BY visit_date DESC"
        browser_params['browser_name'] = browser
        browser_params['hist_path'] = hist_path
        browser_params['hist_sql'] = hist_sql
        return browser_params
    elif browser == 'firefox':
        FIREFOX_PATH = "/Library/Application Support/Firefox/Profiles/qs6kpgry.default-release/places.sqlite"
        hist_path = USER_PATH + FIREFOX_PATH
        hist_sql = "SELECT datetime(moz_historyvisits.visit_date/1000000,'unixepoch','localtime') AS visit_date, moz_places.url AS url, moz_places.title AS url_title FROM moz_places, moz_historyvisits WHERE moz_places.id = moz_historyvisits.place_id ORDER BY visit_date DESC"
        browser_params['browser_name'] = browser
        browser_params['hist_path'] = hist_path
        browser_params['hist_sql'] = hist_sql
        return browser_params
    elif browser == 'safari':
        SAFARI_PATH = "/Library/Safari/History.db"
        hist_path = USER_PATH + SAFARI_PATH
        hist_sql = "SELECT datetime(visit_time + 978307200, 'unixepoch', 'localtime') AS visit_date, url, title AS url_title FROM history_visits INNER JOIN history_items ON history_items.id = history_visits.history_item ORDER BY visit_date DESC"
        browser_params['browser_name'] = browser
        browser_params['hist_path'] = hist_path
        browser_params['hist_sql'] = hist_sql
        return browser_params

def dict_factory(cursor, row):
    d = {}
    for idx, col in enumerate(cursor.description):
        d[col[0]] = row[idx]
    return d

def get_browser_hist(browser_params,timestr):
    bn = browser_params['browser_name']
    # connect to the SQlite databases
    print("browser: " + bn)
    print("hist_path: " + browser_params['hist_path'])

    try:
        connection = sqlite3.connect(browser_params['hist_path'])
    except:
        print("Connection to SQLite: " + bn + " failed!")
        print("It may not be installed or not closed")
        return

    connection.row_factory = dict_factory
    cursor = connection.cursor()
    try:
        cursor.execute(browser_params['hist_sql'])
    except:
        browser_open = ("\t" + bn + "!! " +"is open. Please close your browser and retry.")
        print(browser_open.upper())

    tables = cursor.fetchall()
    results = len(tables)
    print("{}: Results {}".format(bn, results))
    print()

    if results >0:
        dict_bn = {"browser":bn}
        jsonFile = open(LOG_DIR + "/"+ bn + "-" + timestr + ".json","w")

        for v in tables:
            v.update(dict_bn)
            jsonFile.write(json.dumps(v) + '\n')


def main():
    timestr = time.strftime("%Y%m%d-%H%M%S")
    for browser in browsers:
        print("Starting {}".format(browser))
        browser_params = {}
        path = get_path(browser,browser_params)
        if path:
            get_browser_hist(browser_params,timestr)
main()

上面的历史数据路径是在我的 MacOS 电脑上的。你需要根据自己的实际使用电脑的操作系统来进行修改这些路径。在我使用 terminal 进行导入数据时,我发现 terminal 的权限不够,我需要做如下的配置才可以:

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第1张图片

我们可以进入到 scripts 的目录中,打入如下的命令:

$ python3 browser_history.py 

在我的电脑上显示:

$ python3 browser_history.py 
Starting brave
browser: brave
hist_path: /Users/liuxg/Library/Application Support/BraveSoftware/Brave-Browser/Default/History
Connection to SQLite: brave failed!
It may not be installed or not closed
Starting chrome
browser: chrome
hist_path: /Users/liuxg/Library/Application Support/Google/Chrome/Default/History
chrome: Results 28647

Starting firefox
browser: firefox
hist_path: /Users/liuxg/Library/Application Support/Firefox/Profiles/qs6kpgry.default-release/places.sqlite
firefox: Results 9

Starting safari
browser: safari
hist_path: /Users/liuxg/Library/Safari/History.db
safari: Results 325

Starting edge
browser: edge
hist_path: /Users/liuxg/Library/Application Support/Microsoft Edge/Default/History
Connection to SQLite: edge failed!
It may not be installed or not closed

上面显示我有三个浏览器:chrome, safari 及 firefox。针对这几个浏览器,通过 python 的脚本把 SQLite 中的数据导入到项目根目录下 data\logs 目录下的 .json 文件:

$ pwd
/Users/liuxg/python/elastic-stack-browser-history
liuxg:elastic-stack-browser-history liuxg$ ls 
LICENSE                   docker-compose-ingest.yml images
README.md                 docker-compose.yml        scripts
data                      elastic-stack
liuxg:elastic-stack-browser-history liuxg$ ls data/logs
chrome-20200819-160808.json  safari-20200819-160808.json
firefox-20200819-160808.json

如上图所示,我们可以看到有三个生产的 json 文件生成,分别对应于我电脑上的三个浏览器。在这三个文件中,它们分别含有各个浏览器所对应的访问的历史数据:

{"visit_date": "2020-08-19 16:04:37", "url": "https://github.com/liu-xiao-guo/elastic-stack-browser-history", "url_title": "liu-xiao-guo/elastic-stack-browser-history: Import your browser history into Elastic Stack", "browser": "chrome"}
{"visit_date": "2020-08-19 16:04:36", "url": "https://github.com/liu-xiao-guo/elastic-stack-browser-history/tree/main/scripts", "url_title": "elastic-stack-browser-history/scripts at main \u00b7 liu-xiao-guo/elastic-stack-browser-history", "browser": "chrome"}
{"visit_date": "2020-08-19 16:03:59", "url": "https://github.com/liu-xiao-guo/elastic-stack-browser-history/blob/main/scripts/browser_history.py", "url_title": "elastic-stack-browser-history/browser_history.py at main \u00b7 liu-xiao-guo/elastic-stack-browser-history", "browser": "chrome"}
{"visit_date": "2020-08-19 16:03:46", "url": "https://github.com/?q=brow", "url_title": "GitHub", "browser": "chrome"}

它们的数据如上面所示。每天记录如下:

{
  "visit_date": "2020-08-19 16:04:37",
  "url": "https://github.com/liu-xiao-guo/elastic-stack-browser-history",
  "url_title": "liu-xiao-guo/elastic-stack-browser-history: Import your browser history into Elastic Stack",
  "browser": "chrome"
}

整个上面的数据显然不是很结构化的数据,我们需要使用 Logstash 或其它的方法来对这个结构的数据来进行结构化,比如我们分析每个记录的 domain 名称等等。

 

启动 Elastic Stack

在今天的练习中,我们将使用 docker 来安装 Elastic Stack:

  • Elasticsearch
  • Kibana
  • Logstash

我们可以通过 docker-compose.yml 文件来启动这三个 docker。在项目的根目录中,我们会发现一个叫做 docker-compose-ingest.yml 的文件:

docker-compose-ingest.yml

version: '2'

services:

  #Elasticsearch container
  elasticsearch:
    image: docker.elastic.co/elasticsearch/elasticsearch:${ELASTIC_VERSION}
    environment:
      # - cluster.name=docker-pocket
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
      - "discovery.type=single-node"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    mem_limit: 1g
    volumes:
      - esdata1:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - esnet

  #Logstash container
  logstash:
    image: docker.elastic.co/logstash/logstash:${ELASTIC_VERSION}
    volumes:
      - ./elastic-stack/config/logstash/logstash.yml:/usr/share/logstash/config/logstash.yml
      - ./elastic-stack/config/logstash/pipeline:/usr/share/logstash/pipeline
      - ./data/logs:/usr/share/data
    ports:
      - 5000:5000
      - 9600:9600
    environment:
      LS_JAVA_OPTS: "-Xmx256m -Xms256m"
    networks:
      - esnet

  #Kibana container      
  kibana:
    image: docker.elastic.co/kibana/kibana:${ELASTIC_VERSION}
    ports:
      - 5601:5601      
    networks:
      - esnet

volumes:
  esdata1:
    driver: local

networks:
  esnet:

上面的文件非常简单。我们可以看到一个被定义的变量 ELASTIC_VERSION。这个变量被定义于 .env 文件中:

ELASTIC_VERSION=7.8.0

也就是说,我们将使用 7.8.0 版本来进行安装。

由于我们要使用 Logstash 来对我们的数据进行处理,并导入到 Elasticsearch 中,如上图所示,它的配置文件在位置:

./elastic-stack/config/logstash/pipeline

定义:

logstash.conf

# Logstash Input Plugin
# File: https://www.elastic.co/guide/en/logstash/current/plugins-inputs-file.html
# JSON Codec: https://www.elastic.co/guide/en/logstash/current/plugins-codecs-json.html

input {
  file {
    path => [ "/usr/share/data/*.json"]
    # sincedb_path => "/usr/share/data/sincedb"
    start_position => "beginning"
    codec => "json"
  }
}

# Logstash Filter Plugins
# Grok: https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
# Date: https://www.elastic.co/guide/en/logstash/current/plugins-filters-date.html
# Mutate: https://www.elastic.co/guide/en/logstash/current/plugins-filters-mutate.html
# Urldecode: https://www.elastic.co/guide/en/logstash/current/plugins-filters-urldecode.html

filter { 

  date {
    match => ["visit_date","yyyy-MM-dd HH:mm:ss"]
    timezone =>"America/Los_Angeles"
    target => ["@timestamp"]
    locale => "en"
  }

  if [url] {
    grok {
      break_on_match => "false"
      match => { "[url]" => "%{URIPROTO:url_proto}://%{URIHOST:domain}%{URIPATH:url_path}%{URIPARAM:url_params}?" }
      keep_empty_captures => "false"      
    }

    if "." not in [domain] {

      if ":" in [domain] {

        mutate {
          split => ["domain",":"]
            add_field => ["site_domain", "%{[domain][0]}" ]  
        }

        mutate {
            replace => {
              "domain" => "%{[domain][0]}" 
            }  
        }        

      }
      else {
        mutate {
          copy => ["domain","site_domain"]
        }
      }
    }

    else {
      mutate {
        copy => {"domain" => "domain_copy"}
      }

      mutate {
        split => ["domain_copy","."]
          add_field => ["sub_domain", "%{[domain_copy][0]}" ]  
          add_field => ["site_domain", "%{[domain_copy][-2]}.%{[domain_copy][-1]}" ]  
      }

      mutate {  
          # Join together whats left as the class name.
          remove_field  => ["domain_copy"]
      }
    }

    urldecode { 
      field => "url_path" 
    }
  }
}


# Logstash Output Plugins 
# Elasticsearch: https://www.elastic.co/guide/en/logstash/current/plugins-outputs-elasticsearch.html
# StdOut: https://www.elastic.co/guide/en/logstash/current/plugins-outputs-stdout.html

output {
  elasticsearch {
    hosts    => [ 'elasticsearch:9200' ]
    manage_template => "false"
    index => "logstash-browser"
  }
  stdout { }
}

经过 Logstash 的处理,它会把之前的 json 文件中每一个文档都进行提取,结构化,并导入到 Elasticsearch 中。从上面我们可以看到被导入的索引的名字叫做 logstash-browser。

我们通过如下的方式来进行启动 Elastic Stack。在项目的根目录中:

docker-compose -f docker-compose-ingest.yml up

这样我们就启动了 Elastic Stack。如果你还没有下载过 7.8.0 的镜像的话,你需要耐心等待下载所有需要的镜像。等安装完后,Elasticsearch, Kibana 及 Logtash 将会被自动启动:

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第2张图片

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第3张图片

如果一切正常的话,你可以在浏览器器中查看 Kibana:

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第4张图片

Hooray ! 我们的 Elastic Stack 已经成功起来了。

 

分析历史数据

我们首先打开 Kibana,并查看被导入的索引:

GET logstash-browser/_count

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第5张图片

上面显示已经被导入的文档数目。我们需要为这个索引建立 index pattern。在这里我就不累述了。在我之前的很多教程中已经讲过了。

我们可以打开 Discover 来分分析数据:

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第6张图片

 

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第7张图片

点击上面的 Add 按钮,添加 domain。我们也可以按照同样的方法来添加 url:

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第8张图片

上面的 url 是不可以被点击的。我们可以按照如下的步骤,把 url 这个字段的格式进行改变:

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第9张图片

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第10张图片

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第11张图片

选择 url 并保存。我们再次回到之前的 Discover 界面:

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第12张图片

这次,我们可以看到在 url 这里显示的是可以被点击的链接了。

我们可以在 Discover 中进行我们想要的搜索。

 

可视化

我们可以运用 Kibana 所提供的可视化工具对我们的数据进行可视化分析。

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第13张图片

上面显示我使用的 browser 的情况。我主要是使用 chrome browser:

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第14张图片

我最常用的几个 domains。

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第15张图片

我最常常访问的几个网站。

在项目中,有一个如下的文件:

$ pwd
/Users/liuxg/python/elastic-stack-browser-history
liuxg:elastic-stack-browser-history liuxg$ ls elastic-stack/config/kibana/BrowserHistory-Kibana.ndjson 
elastic-stack/config/kibana/BrowserHistory-Kibana.ndjson

这个文件是已经被制作好的一个 dashboard 的文件。我们可以在 Kibana 中直接进行导入:

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第16张图片

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第17张图片

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第18张图片

选择我们项目里的 BrowserHistory-Kibana.ndjson 文件,并选择 import:

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第19张图片

我们看到如上的图。我们进入到 dashboard:

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第20张图片

Elastic:利用 Elastic Stack 来分析浏览器历史访问数据_第21张图片

 

我们将看到所有的访问的统计情况。

你可能感兴趣的:(Elastic,Kibana,Logstash)