- deepseek v3 搭建个人知识库
AI算法网奇
aigc与数字人人工智能
目录deepseek-r1本地部署,这个比较好,推荐Chatbox连接ollama服务知乎教程,需要注册:deepseek-r1本地部署,这个比较好,推荐公司数据不泄露,DeepSeekR1本地化部署+web端访问+个人知识库搭建与使用,喂饭级实操教程,老旧笔记本竟跑出企业级AI_deepseek本地知识库-CSDN博客命令行运行:ollamarundeepseek-r1:1.5bollamaru
- LWN:让GPU的工作也依赖进程优先级!
LinuxNews搬运工
javapython人工智能大数据linux
关注了就能看到更多这么棒的文章哦~SynchronizedGPUpriorityschedulingByJonathanCorbetOctober22,2021DeepLassistedtranslationhttps://lwn.net/Articles/873334/在Unix之类的系统很早期的时候,就已经实现了进程优先级的概念,优先级高的进程可以得到更多的CPU时间来完成它们的工作。如今这里
- DeepSeek横空出世,AI格局或将改写?
倔强的石头_
热点时事AIGC人工智能AIGC
引言这几天,国产AI大模型DeepSeekR1,一飞冲天,在全球AI圈持续引爆热度,DeepSeekR1已经是世界上最先进的AI模型之一,可与OpenAI的新o1和Meta的LlamaAI模型相媲美。DeepSeek-V3模型发布后,在美国热度持续飙升。美国媒体发布紧急信息,中国的新ai技术,已威胁到美国的领先地位。目录引言DeepSeek是谁编辑发布即震撼:DeepSeekR1正式版技术实力大揭
- 【论文笔记】基于图神经网络的多视角视觉重定位 GRNet CVPR 2020 论文笔记
phy12321
相机重定位
GRNet:LearningMulti-viewCameraRelocalizationwithGraphNeuralNetworks驭势科技,北京大学机器感知重点实验室,北京长城航空测控技术研究所本文提出了一种使用多视角图像进行相机重定位的图神经网络。该网络可以使得不连续帧之间进行信息传递,相比于只能在相邻前后帧之间进行信息传递的序列输入和LTSM,其能捕获更多视角信息以进行重定位。因此LSTM
- 【单层神经网络】基于MXNet库简化实现线性回归
辰尘_星启
神经网络mxnet线性回归
写在前面同最开始的两篇文章完整程序及注释'''导入使用的库'''#基本frommxnetimportautograd,nd,gluon#模型、网络frommxnet.gluonimportnnfrommxnetimportinit#学习frommxnet.gluonimportlossasgloss#数据集frommxnet.gluonimportdataasgdata'''生成测试数据集'''#
- 线性回归基础学习
Remoa
人工智能线性回归优化gluonmxnetloss
线性回归基础学习目录:理论知识样例代码测试参考文献一、理论知识线性回归思维导图NDArray:MXNet中存储和变换数据的主要工具,提供GPU计算和自动求梯度等功能线性回归可以用神经网络图表示,也可以用矢量计算表示在Gluon中,data模块提供了有关数据处理的工具,nn模块定义了大量神经网络的层,loss模块定义了各种损失函数在MXNet的init模块(initializer)提供了模型参数化的
- 基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
@橘柑橙柠桔柚
神经网络matlabmvc
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码实现1概述模糊控制(FuzzyControl)是1965年,由美国的Zadeh率先创立了模糊集合论,后来又提出了模糊逻辑控制器的概念和有关定理。于1974年第一次组成了模糊逻辑控制器,并使用于锅炉和汽轮机的控制系统
- OpenAI紧急加播:ChatGPT上新深度搜索,持续思考30分钟输出1万字,刷榜“人类最后的考试”
量子位
就在开源的DeepSeek-R1被整合进各路AI搜索工具之际,OpenAI临时举行小型发布会。4点27通知,8点开始直播。ChatGPT上新“DeepResearch”,把推理大模型的思考能力用于联网搜索。据介绍,DeepResearch功能可在数十分钟完成人类专家需要几个小时的复杂研究任务。在“人类最后的考试”上,DeepResearch刷新了最高分,比o3-mini高推理设置分数高出一倍。该测
- PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(NeuralODEs)是深度学习领域的创新性模型架构,它将神经网络的离散变换扩展为连续时间动力系统。与传统神经网络将层表示为离散变换不同,NeuralODEs将变换过程视为深度(或时间)的连续函数。这种方法为机器学习开创了新的研究方向,尤其在生成模型、时间序列分析和物理信息学习等领域具有重要应用。本文将基于Torchdyn(一个专门用于连续深度学习和平衡模型的PyTorch扩展库)
- 基于CNN(一维卷积Conv1D)+LSTM+Attention 实现股票多变量时间序列预测(PyTorch版)
矩阵猫咪
cnnlstmpytorch注意力机制卷积神经网络长短期记忆网络Attention
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。在深度学习的众多模型中,卷积神经网络(CNN)和长短期记忆网络(LSTM)因其独特的优势
- 周报 | 25.1.27-25.2.2文章汇总
双木的木
深度学习拓展阅读python拓展学习人工智能transformer算法深度学习YOLOchatgptllama
为了更好地整理文章和发表接下来的文章,以后每周都汇总一份周报。周报|25.1.20-25.1.26文章汇总-CSDN博客机器学习AI算法工程|DeepSeekV3两周使用总结-CSDN博客Datawhale|一文详尽之SFT(监督微调,建议收藏)!-CSDN博客arXiv每日学术速递|强强联合:CNN与Transformer融合创新提升模型性能!!-CSDN博客AI生成未来|字节提出VideoWo
- 【车间调度】基于卷积神经网络的柔性作业车间调度问题的两阶段算法(Matlab代码实现)
宇哥预测优化代码学习
cnn算法matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述两阶段算法概述第一阶段:特征提取与表示学习第二阶段:调度策略生成与优化研究挑战与前景2运行结果3参考文献4Matlab代码实现1概述该文提出一种基于卷积神经网络的有效两阶段算法,以求解具有机器故障的柔性作业车间调度问题(FJSP)。建立了以最大完成时间
- Ollama 部署 DeepSeek - r1 教程:Windows 与 Linux 篇
Fgaoxing
windowslinux人工智能
在人工智能技术飞速发展的今天,能够在本地部署并使用先进的模型成为许多技术爱好者和专业人士的追求。DeepSeek-r1以其出色的性能备受关注,借助Ollama工具,我们可以方便地在Windows和Linux系统上完成部署。下面就为大家详细介绍具体步骤。一、准备工作在开始部署之前,需要确保已经安装了Ollama。如果尚未安装,请按照以下对应系统的安装方法进行操作。(一)Windows系统安装Olla
- Python DeepCopy
ancher2008
PythonPythonCopyDeepCopy原理区别
Copy和DeepCopy的区别。Ppython中所有数据类型都是对象,变量名只是一个对象的引用(标签)。copy:不可变对象:相当于增加了一个对象引用(新标签),包括简单数据类型和Tuple,Set>>>a=123>>>b=a>>>c=copy.copy(a)>>>d=copy.deepcopy(a)>>>id(a)1665100880>>>id(b)1665100880>>>id(c)1665
- Python中的深拷贝详解
嵌入式之禅
pythonwindows服务器Python
深拷贝是Python中一个重要的概念,它用于创建一个对象的完全独立副本,包括所有嵌套对象和其内容。在本文中,我们将详细介绍深拷贝的概念、用法和实际示例。在Python中,深拷贝是通过copy模块中的deepcopy函数实现的。该函数可以创建一个与原始对象完全独立的副本,其中包含所有嵌套对象及其内容。与深拷贝相对的是浅拷贝,浅拷贝只复制对象的引用,而不是对象本身。下面是一个简单的示例,演示了深拷贝和
- 【Python】deepcopy的详细解释
资源存储库
tensorflow人工智能python
目录【Python】deepcopy的详细解释1.浅拷贝与深拷贝的区别2.deepcopy的用法3.浅拷贝与深拷贝的对比4.为什么使用deepcopy?5.deepcopy的工作原理6.__deepcopy__方法7.使用deepcopy时的注意事项总结【Python】deepcopy的详细解释deepcopy是Python标准库中的copy模块提供的一个函数,它用于创建对象的深拷贝。深拷贝与浅拷
- 【车间调度】基于卷积神经网络的柔性作业车间调度问题的两阶段算法(Matlab代码实现)
Ps.729
cnn算法matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述两阶段算法概述第一阶段:特征提取与表示学习第二阶段:调度策略生成与优化研究挑战与前景2运行结果3参考文献4Matlab代码实现1概述该文提出一种基于卷积神经网络的有效两阶段算法,以求解具有机器故障的柔性作业车间调度问题(FJSP)。建立了以最大完成时间
- 图神经网络实战(2)——图论基础
盼小辉丶
图神经网络从入门到项目实战神经网络图论图神经网络GNN
图神经网络实战(2)——图论基础0.前言1.图属性1.1有向图和无向图1.2加权图和非加权图1.3连通图和非连通图1.4其它图类型2.图概念2.1基本对象2.2图的度量指标2.2邻接矩阵表示法3.图算法3.1广度优先搜索3.2深度优先搜索小结系列链接0.前言图论(Graphtheory)是数学的一个基本分支,涉及对图研究。图是复杂数据结构的可视化表示,有助于理解不同实体之间的关系。图论提供了大量建
- DeepSeek:开启智能搜索与AI发展的新纪元
gs80140
AI人工智能
在人工智能领域,DeepSeek正以其卓越的技术创新和强大的性能表现,成为全球瞩目的焦点。作为一款基于深度学习技术的智能搜索引擎和AI模型,DeepSeek不仅在技术上取得了重大突破,还在多个应用场景中展现了巨大的应用潜力,为用户带来了前所未有的智能体验。一、DeepSeek简介DeepSeek由杭州深度求索人工智能基础技术研究有限公司推出,是一款集自然语言处理(NLP)、计算机视觉(CV)、强化
- 小南每日 AI 资讯 |美国与日本企业联合投资“星际之门”项目| 罗永浩老师最新初创项目上线! | 25/01/24
小南AI学院
人工智能microsoft
近期人工智能(AI)领域的重要动态随着人工智能技术的迅猛发展,多个领域涌现出令人瞩目的创新。以下是近期AI领域的几项重大进展,涵盖技术创新、行业合作以及AI在各个领域的应用:1.AI技术创新与产品发布DeepSeek发布开源模型R1,挑战传统开发模式中国初创公司深度求索(DeepSeek)于1月27日发布开源AI模型R1。该模型以低成本实现接近OpenAIGPT-3的性能,打破了“越大越好”的传统
- Stable Diffusion 创始人看不下去了:DeepSeek 没抄袭!
TGITCIC
AI-大模型的落地之道deepseekdeepseek开源开源deepseekdeepseek模型deepseek抄袭deepseek火deepseek牛
DeepSeek引发的热议DeepSeek在AI界掀起波澜,受到关注的同时,不少人对其抄袭指控纷纷而至。争论中的焦点在于其技术的独特性与法律合规。引发此风波的核心在于其是否真的具备自主创新的能力。EmadMostaque的角色作为StableDiffusion的创始人,EmadMostaque是AI领域的重要人物。他不仅推动了开源技术的发展,也在这场争论中挺身而出,为DeepSeek辩护。Emad
- 基于python的Kimi AI 聊天应用
hunter206206
pythonpython自然语言处理
因为这几天deepseek有点状况,导致apikey一直生成不了,用kimi练练手。这是一个基于MoonshotAI的Kimi接口开发的聊天应用程序,使用PythonTkinter构建图形界面。项目结构项目由三个主要Python文件组成:1.main_kimi.py主程序入口文件,继承了ChatWindow类并实现了问答逻辑:创建主应用程序窗口初始化聊天逻辑实现提交问题的处理函数2.gui.py图
- Stable Diffusion创始人:DeepSeek没有抄袭!
Datawhale
stablediffusion人工智能
Datawhale分享观点:EmadMostaque,编译:Datawhale视频中英对照如下:Distillationisnothingnew,andthere'snowaytokindofstopthisfromthemodelbasis.蒸馏技术并不是什么新事物,而且从模型的角度来看,没有办法完全阻止这种情况的发生。Butifyouactuallylookatwhatthepapersays
- 深度学习:基础原理与实践
阿尔法星球
深度学习python人工智能
1.深度学习概述1.1定义与发展历程深度学习是机器学习的一个分支,它基于人工神经网络的学习算法,特别是那些具有多层(深层)结构的网络。深度学习模型能够自动从原始数据中提取复杂的特征,而不需要人为设计特征提取算法。定义:深度学习可以定义为使用深层神经网络进行学习的过程,这些网络由多个非线性的变换组成,能够学习数据的多层次表示。发展历程:深度学习的起源可以追溯到1943年WarrenSturgisMc
- 探索神经网络的奥秘:从基础理论到Python实践
仲毓俏Alanna
探索神经网络的奥秘:从基础理论到Python实践【下载地址】第一章神经网络如何工作附Python神经网络编程.pdf分享本资源文件提供了关于神经网络基础知识的详细介绍,并附带了一个Python神经网络编程的PDF文件。通过学习本资源,您将能够理解神经网络的基本工作原理,并掌握如何使用Python进行神经网络编程项目地址:https://gitcode.com/Resource-Bundle-Col
- 第三篇:模型压缩与量化技术——DeepSeek如何在边缘侧突破“小而强”的算力困局
python算法(魔法师版)
数据挖掘机器学习人工智能深度学习神经网络生成对抗网络边缘计算
——从算法到芯片的全栈式优化实践随着AI应用向移动终端与物联网设备渗透,模型轻量化成为行业核心挑战。DeepSeek通过自研的“算法-编译-硬件”协同优化体系,在保持模型性能的前提下,实现参数量与能耗的指数级压缩。本文从技术原理、工程实现到落地应用,完整解析其全链路压缩技术体系。第一章算法层创新:结构化压缩与动态稀疏化1.1非均匀结构化剪枝技术DeepSeek提出**“敏感度感知通道剪枝”(SAC
- DeepSeek API 的获取与对话示例
Hoper.J
AIGCDeepSeekAPIAI
代码文件下载:Code在线链接:Kaggle|Colab文章目录注册并获取API环境依赖设置API单轮对话多轮对话流式输出更换模型注册并获取API访问https://platform.deepseek.com/sign_in进行注册并登录:新用户注册后将赠送10块钱余额,有效期为一个月:点击左侧的APIkeys(或者访问https://platform.deepseek.com/api_keys)
- 计算机视觉领域的轻量化模型——GhostNet 模型
DuHz
边缘计算轻量化模型计算机视觉人工智能算法深度学习神经网络边缘计算网络
GhostNet模型详解GhostNet是一个高效的轻量化卷积神经网络模型,专为资源受限的设备(如移动设备和嵌入式系统)设计。它的核心创新是Ghost模块,该模块通过生成更多的特征图来减少计算资源消耗。GhostNet适用于实时计算任务,如图像分类和物体检测,同时在保持较高准确率的基础上,优化了计算效率。目录GhostNet背景Ghost模块概述GhostNet网络架构Ghost模块的数学原理Gh
- 第二篇:多模态技术突破——DeepSeek如何重构AI的感知与认知边界
python算法(魔法师版)
动态规划
——从跨模态对齐到因果推理的工程化实践在AI技术从单一模态向多模态跃迁的关键阶段,DeepSeek通过自研的多模态融合框架,在视觉-语言-语音的联合理解与生成领域实现系统性突破。本文将从技术实现层面,解构其跨模态表征学习、动态融合机制与因果推理能力的内在创新。1.跨模态对齐革命:时空一致性建模传统多模态模型常面临模态割裂问题,DeepSeek提出「时空同步对比学习」(ST-CL)框架:视觉-语言对
- uni-popup从底部弹出时,取消底部安全区域(小程序)
ikun_isme
前端javascript开发语言
标题内容区域关闭import{ref}from'vue'constpopup=ref(null)constshowPopup=()=>{popup.value.open()}constclosePopup=()=>{popup.value.close()}.popup-content{min-height:200px;padding:15px;}/*取消底部安全区域*/:deep(.uni-pop
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的