使用keras实现深度残差网络

from keras.models import Model
from keras.layers import Input, Dense, Dropout, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, concatenate, \
    Activation, ZeroPadding2D
from keras.layers import add, Flatten
# from keras.layers.convolutional import Conv2D,MaxPooling2D,AveragePooling2D
import numpy as np

seed = 7
np.random.seed(seed)


def Conv2d_BN(x, nb_filter, kernel_size, strides=(1, 1), padding='same', name=None):
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None

    x = Conv2D(nb_filter, kernel_size, padding=padding, strides=strides, activation='relu', name=conv_name)(x)
    x = BatchNormalization(axis=3, name=bn_name)(x)
    return x


def Conv_Block(inpt, nb_filter, kernel_size, strides=(1, 1), with_conv_shortcut=False):
    x = Conv2d_BN(inpt, nb_filter=nb_filter, kernel_size=kernel_size, strides=strides, padding='same')
    x = Conv2d_BN(x, nb_filter=nb_filter, kernel_size=kernel_size, padding='same')
    if with_conv_shortcut:
        shortcut = Conv2d_BN(inpt, nb_filter=nb_filter, strides=strides, kernel_size=kernel_size)
        x = add([x, shortcut])
        return x
    else:
        x = add([x, inpt])
        return x


inpt = Input(shape=(224, 224, 3))
x = ZeroPadding2D((3, 3))(inpt)
x = Conv2d_BN(x, nb_filter=64, kernel_size=(7, 7), strides=(2, 2), padding='valid')
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
# (56,56,64)
x = Conv_Block(x, nb_filter=64, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=64, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=64, kernel_size=(3, 3))
# (28,28,128)
x = Conv_Block(x, nb_filter=128, kernel_size=(3, 3), strides=(2, 2), with_conv_shortcut=True)
x = Conv_Block(x, nb_filter=128, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=128, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=128, kernel_size=(3, 3))
# (14,14,256)
x = Conv_Block(x, nb_filter=256, kernel_size=(3, 3), strides=(2, 2), with_conv_shortcut=True)
x = Conv_Block(x, nb_filter=256, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=256, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=256, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=256, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=256, kernel_size=(3, 3))
# (7,7,512)
x = Conv_Block(x, nb_filter=512, kernel_size=(3, 3), strides=(2, 2), with_conv_shortcut=True)
x = Conv_Block(x, nb_filter=512, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=512, kernel_size=(3, 3))
x = AveragePooling2D(pool_size=(7, 7))(x)
x = Flatten()(x)
x = Dense(1000, activation='softmax')(x)

model = Model(inputs=inpt, outputs=x)
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
model.summary()

你可能感兴趣的:(深度学习)