from keras.models import Model
from keras.layers import Input, Dense, Dropout, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, concatenate, \
Activation, ZeroPadding2D
from keras.layers import add, Flatten
# from keras.layers.convolutional import Conv2D,MaxPooling2D,AveragePooling2D
import numpy as np
seed = 7
np.random.seed(seed)
def Conv2d_BN(x, nb_filter, kernel_size, strides=(1, 1), padding='same', name=None):
if name is not None:
bn_name = name + '_bn'
conv_name = name + '_conv'
else:
bn_name = None
conv_name = None
x = Conv2D(nb_filter, kernel_size, padding=padding, strides=strides, activation='relu', name=conv_name)(x)
x = BatchNormalization(axis=3, name=bn_name)(x)
return x
def Conv_Block(inpt, nb_filter, kernel_size, strides=(1, 1), with_conv_shortcut=False):
x = Conv2d_BN(inpt, nb_filter=nb_filter, kernel_size=kernel_size, strides=strides, padding='same')
x = Conv2d_BN(x, nb_filter=nb_filter, kernel_size=kernel_size, padding='same')
if with_conv_shortcut:
shortcut = Conv2d_BN(inpt, nb_filter=nb_filter, strides=strides, kernel_size=kernel_size)
x = add([x, shortcut])
return x
else:
x = add([x, inpt])
return x
inpt = Input(shape=(224, 224, 3))
x = ZeroPadding2D((3, 3))(inpt)
x = Conv2d_BN(x, nb_filter=64, kernel_size=(7, 7), strides=(2, 2), padding='valid')
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
# (56,56,64)
x = Conv_Block(x, nb_filter=64, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=64, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=64, kernel_size=(3, 3))
# (28,28,128)
x = Conv_Block(x, nb_filter=128, kernel_size=(3, 3), strides=(2, 2), with_conv_shortcut=True)
x = Conv_Block(x, nb_filter=128, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=128, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=128, kernel_size=(3, 3))
# (14,14,256)
x = Conv_Block(x, nb_filter=256, kernel_size=(3, 3), strides=(2, 2), with_conv_shortcut=True)
x = Conv_Block(x, nb_filter=256, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=256, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=256, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=256, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=256, kernel_size=(3, 3))
# (7,7,512)
x = Conv_Block(x, nb_filter=512, kernel_size=(3, 3), strides=(2, 2), with_conv_shortcut=True)
x = Conv_Block(x, nb_filter=512, kernel_size=(3, 3))
x = Conv_Block(x, nb_filter=512, kernel_size=(3, 3))
x = AveragePooling2D(pool_size=(7, 7))(x)
x = Flatten()(x)
x = Dense(1000, activation='softmax')(x)
model = Model(inputs=inpt, outputs=x)
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
model.summary()