opencv去除最小孔洞以及最小连通域的cuda加速,(这里只供自己查看)

描述

最近遇到一个opencv中,去除最小空洞以及最小连通域的 算法, 因为要优化并集成到项目中,所以使用cuda对其进行加速,不过中间遇到一些问题,需要诚待解决,而且只是初版,里面的关于最佳线程数量的分配,都还没有优化。不过先贴上来吧,等有好的方式再做修改.

opencv原算法.(这里其实也是百度到的一个)

void Qimage2MatInteroperateGpu::removeSmallRegion(Mat & Src, Mat & Dst, int AreaLimit, int CheckMode, int NeihborMode)
{
	int RemoveCount = 0;
	//新建一幅标签图像初始化为0像素点,为了记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查 
	//初始化的图像全部为0,未检查
	Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1); //和原始图像同等大小的空位图.
	if (CheckMode == 1)//去除小连通区域的白色点
	{
		cout << "去除小连通域.";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at(i, j) < 10)
				{
					PointLabel.at(i, j) = 3;//将背景黑色点标记为合格,像素为3
				}
			}
		}
	}
	else//去除孔洞,黑色点像素
	{
		cout << "去除孔洞";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at(i, j) > 10)
				{
					PointLabel.at(i, j) = 3;//如果原图是白色区域,标记为合格,像素为3
				}
			}
		}
	}


	showMat(PointLabel,"remove dong");
	//for (int i = 0; i < Src.rows; i++)
	//{
	//	for (int j = 0; j < Src.cols; j++)
	//	{
	//		if (PointLabel.at(i, j) == 0)
	//		{

	//		}
	//	}
	//}



	vectorNeihborPos;//将邻域压进容器  田字格
	NeihborPos.push_back(Point2i(-1, 0));
	NeihborPos.push_back(Point2i(1, 0));
	NeihborPos.push_back(Point2i(0, -1));
	NeihborPos.push_back(Point2i(0, 1));
	if (NeihborMode == 1) //米字格
	{
		cout << "Neighbor mode: 8邻域." << endl;
		NeihborPos.push_back(Point2i(-1, -1));
		NeihborPos.push_back(Point2i(-1, 1));
		NeihborPos.push_back(Point2i(1, -1));
		NeihborPos.push_back(Point2i(1, 1));
	}
	else cout << "Neighbor mode: 4邻域." << endl;
	int NeihborCount = 4 + 4 * NeihborMode;
	int CurrX = 0, CurrY = 0;


	int recordNumvber = 0;
	bool status = false;
	//开始检测
	for (int i = 0; i < Src.rows; i++)
	{
		for (int j = 0; j < Src.cols; j++)
		{
			if (PointLabel.at(i, j) == 0)//标签图像像素点为0,表示还未检查的不合格点
			{   
				
				std::cout << "开始记录不合格的点: " << i<<" "<GrowBuffer;//记录检查像素点的个数
				GrowBuffer.push_back(Point2i(j, i));  // j i  ?
				PointLabel.at(i, j) = 1;//标记为正在检查
				int CheckResult = 0;


				//循环为自我迭代的过程,在循环自身的过程中,需要不停的对 后来加入的数据也进行计算迭代.


				//这里并行化的时候,可以使用一个比较大的数组来代替.
				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					for (int q = 0; q < NeihborCount; q++)//循环遍历周围的4或者8点.
					{
						CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x;
						CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y;
						if (CurrX >= 0 && CurrX < Src.cols&&CurrY >= 0 && CurrY < Src.rows)  //防止越界  
						{
							if (PointLabel.at(CurrY, CurrX) == 0)
							{
								GrowBuffer.push_back(Point2i(CurrX, CurrY));	 //邻域点加入buffer  
								PointLabel.at(CurrY, CurrX) = 1;           //更新邻域点的检查标签,避免重复检查  
							}
						}
					}

				}

				std::cout << "计算获取到的区域对象的像素点: " << GrowBuffer.size() << " -- (j i) " << i << " " << j << std::endl;


				if (GrowBuffer.size() > AreaLimit) //判断结果(是否超出限定的大小),1为未超出,2为超出  
					CheckResult = 2;
				else
				{
					CheckResult = 1;
					RemoveCount++;//记录有多少区域被去除
				}


				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					CurrX = GrowBuffer.at(z).x;
					CurrY = GrowBuffer.at(z).y;
					PointLabel.at(CurrY, CurrX) += CheckResult;//标记不合格的像素点,像素值为2
				}
				//********结束该点处的检查**********  


				//
				status = true;
				

			}

			if (status == true)
			{
				//break;
			}

		}


		if (status == true)
		{
			//break;
		}
	}

	CheckMode = 255 * (1 - CheckMode);
	//开始反转面积过小的区域  
	for (int i = 0; i < Src.rows; ++i)
	{
		for (int j = 0; j < Src.cols; ++j)
		{
			if (PointLabel.at(i, j) == 2)
			{
				Dst.at(i, j) = CheckMode;
			}
			else if (PointLabel.at(i, j) == 3)
			{
				Dst.at(i, j) = Src.at(i, j);
			}
		}
	}
	cout << RemoveCount << " objects removed." << endl;


}

cuda加速之后的

定义  
__host__ bool removeSmallRegionGpu(Mat & Src, Mat & Dst, int AreaLimit, int CheckMode, int NeihborMode);

/******************************************************/
	// 函数名   : removeSmallRegionKernelGpu
	// 功能描述 : 最小连通域核函数.
	// 参数     : source		   原图像数据.(注意,这里的原图像必须是经过 灰度变换之后的二值化图像.)
	//			:Auxiliary	   记录的检测标志
	//			: outImg	   输出的图像像素.
	//			:
	// 返回值   : 无
/******************************************************/
__global__ void removeSmallRegionKernelGpu
(uchar* source, uchar* Auxiliary, uchar* outImg,
	int *outCalculateNumber,
	int2* neiBorModeBuffer, int neightborSize, int2 *GrowBuffer, int GrowBufferSize,
	int width, int height,
	int AreaLimit, int checkMode, int neiborMode
);



//实现的部分. 这里描述一下,因为在核函数里啊,实在做不到那个  vector::push_back(),自增,自加,所有,我就使用了一个全局的一维结构体 + 两个变量来模拟 ... (其实大家对比 上面的opencv的写法,就明白cuda这部分为什么这么写了,包括上面的参数列表部分..当然,里面也有一些自测的部分,比如int *outCalculateNumber, 这个参数,希望不会照成误解 )

int tidx = threadIdx.x + blockIdx.x*blockDim.x;
	int tidy = threadIdx.y + blockIdx.y*blockDim.y;
	
	//行列的偏移.
	int offsetx = gridDim.x * blockDim.x;
	int offsety = gridDim.y * blockDim.y;
	if (tidx < 0 || tidx > width || tidy < 0 || tidy > height) return; //防止越界.

	//索引.
	int offsetIndex = tidx + tidy * width;

if (checkMode == 1)//去除小连通区域的白色点
	{
		if (source[offsetIndex] < 10)
		{
			//将背景黑色点标记为合格,像素为3
			Auxiliary[offsetIndex] = ckNumbser;
		}
	}
	else//去除孔洞,黑色点像素
	{
		if (source[offsetIndex] > 10)
		{
			Auxiliary[offsetIndex] = ckNumbser;
		}
	}

	//同步等待以上所有的数据都计算完毕.
	__syncthreads();

	int neihborCount = 4;
	if (neightborSize < neihborCount)
	{
		printf("neightborSize less 4 \n");
	}

	if (neiborMode == 1)
	{
		neihborCount = 4 + 4 * neiborMode;
	}

	int currX = 0, currY = 0;


	//这里,让外部修改的数据,可以让整个线程粒子都知道.

	//开始检测. 这里并行化每个单步像素.
	if (Auxiliary[offsetIndex] == 0)
	{
		GrowBuffer[0] = int2{ tidx ,tidy };// tidx ,tidy
		Auxiliary[offsetIndex] = 1; //标记正在检测.
		int checkResult = 0;
		int offSetLength = width * height;

		int GrowBUfferValied = 1;
		//循环,查找关联对象.
		for (int z = 0; z < GrowBUfferValied; z++)
		{
			for (int q = 0; q < neihborCount; q++)
			{
				int2 temp = GrowBuffer[z];
				int2 neigborTemp = neiBorModeBuffer[q];
				currX = temp.x + neigborTemp.x;
				currY = temp.y + neigborTemp.y;

				if (currX >= 0 && currX < width && currY >= 0 && currY < height)  
				{
					int currxyOffset = currX + currY * width;
					if (currxyOffset > 0 && currxyOffset < offSetLength)
					{
						if (Auxiliary[currxyOffset] == 0)
						{						
							GrowBuffer[GrowBUfferValied] = int2{ currX,currY }; //邻域点加入buffer  
							Auxiliary[currxyOffset] = 1;	//更新邻域点的检查标签,避免重复检查
							GrowBUfferValied++;
						}
					}
					
				}
		
			}

			printf("GrowBUfferValied++  %d \n", GrowBUfferValied);

			if (GrowBUfferValied > GrowBufferSize - 1)
			{
				printf("GrowBUfferValied size number is over \n");
				break;
			}

		}

		if (GrowBUfferValied > 20)
		{
			printf("get recRange is %d %d  -> %d   imgsize: %d\n", tidx, tidy, GrowBUfferValied, offSetLength);

		}

		//记录每次的结果.
		outCalculateNumber[offsetIndex] = GrowBUfferValied;


		//判断结果(是否超出限定的大小),1为未超出,2为超出  
		if (GrowBUfferValied > AreaLimit)
		{
			checkResult = 2;
		}
		else
		{
			checkResult = 1;
			//removeCount++;//这里注意,防止资源竞夺.		
		}

		for (int z = 0; z < GrowBUfferValied; z++)
		{
			int2 temp = GrowBuffer[z];
			currX = temp.x;
			currY = temp.y;

			if (currX >= 0 && currX < width && currY >= 0 && currY < height)
			{
				int currxyOffset = currX + currY * width;
				if (currxyOffset > 0 && currxyOffset < offSetLength - 1)
				{
					Auxiliary[currxyOffset] += checkResult; //?
				}
			}
		}
	}

	//每个像素判断,并反转过小的区域.
	checkMode = 255 * (1 - checkMode);
	if (Auxiliary[offsetIndex] == 2)
	{
		outImg[offsetIndex] = checkMode;
	}
	else if (Auxiliary[offsetIndex] == 3)
	{
		outImg[offsetIndex] = source[offsetIndex];
	}

	
	//printf("%d  %d  calculate end \n",tidx,tidy);
	__syncthreads();


/// 本地函数实现部分.
__host__ bool removeSmallRegionGpu(Mat & Src, Mat & Dst, int AreaLimit, int CheckMode, int NeihborMode)
{
	
	if (Src.data == nullptr)
	{
		std::cout << "src is nullptr" << std::endl;
		return false;
	}

	//判断其通道大小.

	//获取其宽高大小.
	int imgWidth = Src.cols;
	int imgHeight = Src.rows;
	int channels = Src.channels();

	if (channels == 3)
	{
		std::cout << "src`  channels  is 3 or more,please convert 1 channel" << std::endl;
		//将多通道合并成单通道.
		return false;
	}

//	cv::imshow("Src", Src);

	std::cout << "Src` channel is " << Src.channels() << std::endl;

	if (Dst.data == nullptr)
	{
		//如果输出图像为空,将自动创建单通道.
		std::cout << "dst data is empty, the process will creat it default" << std::endl;
		Dst = cv::Mat::zeros(cv::Size(imgWidth,imgHeight),CV_8UC1);
	}

	int imgSize = imgWidth * imgHeight*channels;

	//开辟gpu空间.
	uchar* srcGpu = nullptr;
	HANDLE_ERROR(cudaMalloc((void**)&srcGpu,sizeof(uchar)*imgSize));
	HANDLE_ERROR(cudaMemcpy(srcGpu,Src.data,sizeof(uchar)*imgSize,cudaMemcpyKind::cudaMemcpyHostToDevice));

	//开辟输出图像空间大小.
	uchar* DstGpu = nullptr;
	HANDLE_ERROR(cudaMalloc((void**)&DstGpu,sizeof(uchar)*imgSize));
	HANDLE_ERROR(cudaMemset(DstGpu,0,imgSize*sizeof(uchar)));

	//全黑的辅助gpu位图空间
	uchar* AuxiliaryGpu = nullptr;
	HANDLE_ERROR(cudaMalloc((void**)&AuxiliaryGpu, sizeof(uchar)*imgSize));
	HANDLE_ERROR(cudaMemset(AuxiliaryGpu, 0, imgSize * sizeof(uchar)));

	//创建并计算其开辟的最佳核函数算子.
	//int Maxblocks = getMaxThreadNums();
	int Maxblocks = 32; //1024

	dim3  threadsPerBlock(Maxblocks,Maxblocks);
	dim3  blocksPerGrid((imgWidth+threadsPerBlock.x-1)/threadsPerBlock.x,(imgHeight+threadsPerBlock.y-1)/threadsPerBlock.y);


	//需要写入需要的数据.	
	thrust::device_vector neightborBuffer;
	{
		neightborBuffer.push_back(int2{ -1,0 });
		neightborBuffer.push_back(int2{ 1, 0 });
		neightborBuffer.push_back(int2{ 0, -1 });
		neightborBuffer.push_back(int2{  0, 1});
	
		neightborBuffer.push_back(int2{ -1,-1 });
		neightborBuffer.push_back(int2{ -1,1 });
		neightborBuffer.push_back(int2{ 1,-1 });
		neightborBuffer.push_back(int2{ 1,1 });
	}
	//获取gpu 动态数组指针.并将其传入.
	int2* neightBorBufferPtr = thrust::raw_pointer_cast(&neightborBuffer[0]);
	int neightborSize = neightborBuffer.size();


	thrust::device_vector grawBuffer;
	grawBuffer.resize(imgWidth*imgHeight);//imgWidth*imgHeight
	int2* grawBufferPtr = thrust::raw_pointer_cast(&grawBuffer[0]);
	int grawBufferSize = grawBuffer.size();

	std::cout << "blocksPerGrid size: " << blocksPerGrid.x << "  " << blocksPerGrid.y << std::endl;
	std::cout << "threadsPerBlock size: " << threadsPerBlock.x << "  " << threadsPerBlock.y << std::endl;
	
	//预处理待检测图像数据.
	prereatmentAuxiliary << < blocksPerGrid, threadsPerBlock >> > (srcGpu, AuxiliaryGpu,imgWidth,imgHeight,CheckMode);

	cv::Mat auxiliaryTemp = cv::Mat::zeros(cv::Size(imgWidth, imgHeight), CV_8UC1);
	HANDLE_ERROR(cudaMemcpy(auxiliaryTemp.data, AuxiliaryGpu, sizeof(uchar)*imgSize, cudaMemcpyKind::cudaMemcpyDeviceToHost));
	cv::imshow("auxiliaryTemp", auxiliaryTemp);
	/*
		测试辅助数.imgSize
	*/

	//extern __shared__ int getRecordCalculate[]; //共享内存,不能超过16kb

	int* recordBuffer = nullptr;
	cudaMalloc((void**)&recordBuffer,sizeof(int)*imgSize);
	cudaMemset(recordBuffer,0,sizeof(int)*imgSize);

	//并行计算孔洞自生长区域.
	removeSmallRegionKernelGpu << > > (
		srcGpu,AuxiliaryGpu,DstGpu, recordBuffer,
		neightBorBufferPtr, neightborSize,
		grawBufferPtr, grawBufferSize,
		imgWidth,imgHeight,
		AreaLimit,CheckMode,NeihborMode);

	//记录数据

	int *cpuBuffer = new int[imgSize];
	memset(cpuBuffer,0,sizeof(int)*imgSize);
	cudaMemcpy(cpuBuffer,recordBuffer,sizeof(int)*imgSize,cudaMemcpyKind::cudaMemcpyDeviceToHost);

	long controlNumber = 0;
	for (int i = 0; i < imgSize; i++)
	{
		controlNumber += cpuBuffer[i];
	}

	std::cout << "最后总数: " << controlNumber << std::endl;
	
	//计算完毕之后,将gpu数据下载,并拷贝给本地位图.
	HANDLE_ERROR(cudaMemcpy(Dst.data, DstGpu, sizeof(uchar)*imgSize, cudaMemcpyKind::cudaMemcpyDeviceToHost));

	cv::Mat OUTauxiliary = cv::Mat::zeros(cv::Size(imgWidth, imgHeight), CV_8UC1);
	HANDLE_ERROR(cudaMemcpy(OUTauxiliary.data, AuxiliaryGpu, sizeof(uchar)*imgSize, cudaMemcpyKind::cudaMemcpyDeviceToHost));
	cv::imshow("OUTauxiliary", OUTauxiliary);

	//释放gpu空间.
	cudaFree(srcGpu);
	cudaFree(DstGpu);
	cudaFree(AuxiliaryGpu);
	cudaFree(recordBuffer);

	return true;
}

使用方式
void test()
{


 cv::Mat Source = cv::imread(R"(..\\MatLabCuda\\img\\source\\remove_B.bmp)");

  //保证这里的传入的图像为单通道.
  cv::Mat SourceSignel;
  if (Source.channels() == 3)
  {
	  SourceSignel = cv::Mat::zeros(cv::Size(Source.cols,Source.rows),CV_8UC1);
	  for (int i = 0; i < Source.rows; i++)
	  {
		  for (int j = 0; j < Source.cols; j++)
		  {
			  Vec3b temp = Source.at(i,j);
			  SourceSignel.at(i, j) = temp[0];
		  }
	  }

  }

  cv::Mat outImg = cv::Mat::zeros(cv::Size(Source.cols,Source.rows), Source.type());
  cv::Mat outImgGpu = cv::Mat::zeros(cv::Size(Source.cols, Source.rows), CV_8UC1);
  

  removeSmallRegion(SourceSignel,	 outImg,    100, 1, 1);
  removeSmallRegionGpu(SourceSignel, outImgGpu, 100, 1, 1);

}


以上就是整个过程,其实不需要我再介绍什么了,上面的注释以及一些过程的,都写了,只要顺着顺序看,就基本明白我要做的事情了.

你可能感兴趣的:(c++,OpenCV,使用,CUDA)