二叉搜索树的最近公共祖先

题目:

7-15 二叉搜索树的最近公共祖先 (30 分)

给定一棵二叉搜索树的先序遍历序列,要求你找出任意两结点的最近公共祖先结点(简称 LCA)。

输入格式:

输入的第一行给出两个正整数:待查询的结点对数 M(≤ 1 000)和二叉搜索树中结点个数 N(≤ 10 000)。随后一行给出 N 个不同的整数,为二叉搜索树的先序遍历序列。最后 M 行,每行给出一对整数键值 U 和 V。所有键值都在整型int范围内。

输出格式:

对每一对给定的 U 和 V,如果找到 A 是它们的最近公共祖先结点的键值,则在一行中输出 LCA of U and V is A.。但如果 U 和 V 中的一个结点是另一个结点的祖先,则在一行中输出 X is an ancestor of Y.,其中 X 是那个祖先结点的键值,Y 是另一个键值。如果 二叉搜索树中找不到以 U 或 V 为键值的结点,则输出 ERROR: U is not found. 或者 ERROR: V is not found.,或者 ERROR: U and V are not found.

输入样例:

6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99

输出样例:

LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.

分析:根据先序遍历和二叉搜索树的性质建树,再暴力判断就好了。

代码:

#include
using namespace std;
const int N = 1e4+10;
int a[N],b[N],vs[N],f[N],ls[N],rs[N],n,m,rt;
int res,ans;

void ins(int o,int u) {
    if(u

 

你可能感兴趣的:(树)