全局唯一订单号生成方法(参考snowflake)

backgroud

Snowflake is a network service for generating unique ID numbers at high scale with some simple guarantees.

简介

对于一个较大的订购业务场景,我们往往需要能够生成一个全局的唯一的订单号,如何在多个集群,多个节点高效生成唯一订单号?我们参考了Twitter的snowflake算法。

snowflake最初由Twitter开发,用的scala,对于Twitter而言,必须满足每秒上万条消息的请求,并且每条消息能够分配一个全局唯一的ID,因此,ID生成服务要求必须满足高性能(>10K ids/s)、低延迟(<2ms)、高可用的特性,同时生成的ID还可以进行大致的排序,以方便客户端的排序。

Snowflake满足了以上的需求。Snowflake生成的每一个ID都是64位的整型数,它的核心算法也比较简单高效,结构如下:

  • 41位的时间序列,精确到毫秒级,41位的长度可以使用69年。时间位还有一个很重要的作用是可以根据时间进行排序。

  • 10位的机器标识,10位的长度最多支持部署1024个节点。

  • 12位的计数序列号,序列号即一系列的自增id,可以支持同一节点同一毫秒生成多个ID序号,12位的计数序列号支持每个节点每毫秒产生4096个ID序号。

  • 最高位是符号位,始终为0,不可用。

原生算法java实现

/**
 * 摘自网上某blog,记不得地址了。。
 * @Project concurrency
 * Created by wgy on 16/7/19.
 */
public class IdGen {
    private long workerId;
    private long datacenterId;
    private long sequence = 0L;
    private long twepoch = 1288834974657L; //Thu, 04 Nov 2010 01:42:54 GMT
    private long workerIdBits = 5L; //节点ID长度
    private long datacenterIdBits = 5L; //数据中心ID长度
    private long maxWorkerId = -1L ^ (-1L << workerIdBits); //最大支持机器节点数0~31,一共32个
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); //最大支持数据中心节点数0~31,一共32个
    private long sequenceBits = 12L; //序列号12位
    private long workerIdShift = sequenceBits; //机器节点左移12位
    private long datacenterIdShift = sequenceBits + workerIdBits; //数据中心节点左移17位
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; //时间毫秒数左移22位
    private long sequenceMask = -1L ^ (-1L << sequenceBits); //4095
    private long lastTimestamp = -1L;
    private static class IdGenHolder {
        private static final IdGen instance = new IdGen();
    }
    public static IdGen get(){
        return IdGenHolder.instance;
    }
    public IdGen() {
        this(0L, 0L);
    }
    public IdGen(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
    public synchronized long nextId() {
        long timestamp = timeGen(); //获取当前毫秒数
        //如果服务器时间有问题(时钟后退) 报错。
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format(
                    "Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        //如果上次生成时间和当前时间相同,在同一毫秒内
        if (lastTimestamp == timestamp) {
            //sequence自增,因为sequence只有12bit,所以和sequenceMask相与一下,去掉高位
            sequence = (sequence + 1) & sequenceMask;
            //判断是否溢出,也就是每毫秒内超过4095,当为4096时,与sequenceMask相与,sequence就等于0
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp); //自旋等待到下一毫秒
            }
        } else {
            sequence = 0L; //如果和上次生成时间不同,重置sequence,就是下一毫秒开始,sequence计数重新从0开始累加
        }
        lastTimestamp = timestamp;
        // 最后按照规则拼出ID。
        // 000000000000000000000000000000000000000000  00000            00000       000000000000
        // time                                                               datacenterId   workerId    sequence
        return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift) | sequence;
    }
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
    protected long timeGen() {
        return System.currentTimeMillis();
    }
}

注释已经写的比较详细了,不做特别的说明。

订购业务唯一订单号实现

对于订购业务而言,虽然可以记录订单的创建时间,但是一般都需要带有显示的时间戳属性。因此,一个long型已无法满足实际的需求,将输出修改为String类型,前17位用于存储yyyyMMddHHMMssSSS格式的时间,后面用于记录所在集群,节点,以及自增量。

import org.apache.commons.lang.time.DateFormatUtils;

import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.Date;

/**
 * 与snowflake算法区别,返回字符串id,占用更多字节,但直观从id中看出生成时间
 *
 * @Project concurrency
 * Created by wgy on 16/7/19.
 */
public enum IdGenerator {

    INSTANCE;

    private long workerId;   //用ip地址最后几个字节标示
    private long datacenterId = 0L; //可配置在properties中,启动时加载,此处默认先写成0
    private long sequence = 0L;
    private long workerIdBits = 8L; //节点ID长度
    private long datacenterIdBits = 2L; //数据中心ID长度,可根据时间情况设定位数
    private long sequenceBits = 12L; //序列号12位
    private long workerIdShift = sequenceBits; //机器节点左移12位
    private long datacenterIdShift = sequenceBits + workerIdBits; //数据中心节点左移14位
    private long sequenceMask = -1L ^ (-1L << sequenceBits); //4095
    private long lastTimestamp = -1L;

    IdGenerator(){
        workerId = 0x000000FF & getLastIP();
    }


    public synchronized String nextId() {
        long timestamp = timeGen(); //获取当前毫秒数
        //如果服务器时间有问题(时钟后退) 报错。
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format(
                    "Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        //如果上次生成时间和当前时间相同,在同一毫秒内
        if (lastTimestamp == timestamp) {
            //sequence自增,因为sequence只有12bit,所以和sequenceMask相与一下,去掉高位
            sequence = (sequence + 1) & sequenceMask;
            //判断是否溢出,也就是每毫秒内超过4095,当为4096时,与sequenceMask相与,sequence就等于0
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp); //自旋等待到下一毫秒
            }
        } else {
            sequence = 0L; //如果和上次生成时间不同,重置sequence,就是下一毫秒开始,sequence计数重新从0开始累加
        }
        lastTimestamp = timestamp;


        long suffix = (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;

        String datePrefix = DateFormatUtils.format(timestamp, "yyyyMMddHHMMssSSS");

        return datePrefix + suffix;
    }

    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    protected long timeGen() {
        return System.currentTimeMillis();
    }

    private byte getLastIP(){
        byte lastip = 0;
        try{
            InetAddress ip = InetAddress.getLocalHost();
            byte[] ipByte = ip.getAddress();
            lastip = ipByte[ipByte.length - 1];
        } catch (UnknownHostException e) {
            e.printStackTrace();
        }
        return lastip;
    }
}

测试

测试环境

  • macbook Pro 2.4 GHz Intel Core i5 4 GB 1600 MHz DDR3
  • 10个线程,每个线程生成5w个

    需2000ms左右,测试代码如下:

测试代码

 @Test
    public void testNextId() throws Exception {
        final IdGenerator idg = IdGenerator.INSTANCE;
        ExecutorService es = Executors.newFixedThreadPool(10);
        final HashSet idSet = new HashSet();
        Collections.synchronizedCollection(idSet);
        long start = System.currentTimeMillis();
        System.out.println("***** start generate id ******");
        for (int i = 0; i < 10; i++)
            es.execute(new Runnable() {
                public void run() {
                    for (int j = 0; j < 50000; j++) {
                        String id= idg.nextId();
                        synchronized (idSet){
                            idSet.add(id);
                        }
                    }
                }
            });
        es.shutdown();
        es.awaitTermination(10, TimeUnit.SECONDS);
        long end = System.currentTimeMillis();
        System.out.println("***** end generate id *****");
        System.out.println("***** cost " + (end-start) + " ms!");
        Assert.assertEquals(10 * 50000, idSet.size());
    }

测试结果

***** start generate id ******
***** end generate id ******
***** cost 2091 ms!

你可能感兴趣的:(全局唯一订单号生成方法(参考snowflake))