实例解读什么是Redis缓存穿透、缓存雪崩和缓存击穿

Redis缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面。但同时,它也带来了一些问题。其中,最要害的问题,就是数据的一致性问题,从严格意义上讲,这个问题无解。如果对数据的一致性要求很高,那么就不能使用缓存。

另外的一些典型问题就是,缓存穿透、缓存雪崩和缓存击穿。目前,业界也都有比较流行的解决方案。本篇文章,并不是要更加完美的解决这三个问题,也不是要颠覆业界流行的解决方案。而是,从实际代码操作,来演示这三个问题现象。之所以要这么做,是因为,仅仅看这些问题的学术解释,脑袋里很难有一个很形象的概念,有了实际的代码演示,可以加深对这些问题的理解和认识。

常见的缓存处理流程
前台请求,后台先从缓存中取数据,取到直接返回结果,取不到时从数据库中取,数据库取到更新缓存,并返回结果,数据库也没取到,那直接返回空结果。实例解读什么是Redis缓存穿透、缓存雪崩和缓存击穿_第1张图片
一、缓存穿透
描述:
缓存穿透,是指查询一个数据库一定不存在的数据。正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存。如果数据库查询对象为空,则不放进缓存。
实例解读什么是Redis缓存穿透、缓存雪崩和缓存击穿_第2张图片
代码流程

1.参数传入对象主键ID
2.根据key从缓存中获取对象
3.如果对象不为空,直接返回
4.如果对象为空,进行数据库查询
5.如果从数据库查询出的对象不为空,则放入缓存(设定过期时间)

想象一下这个情况,如果传入的参数为-1,会是怎么样?这个-1,就是一定不存在的对象。就会每次都去查询数据库,而每次查询都是空,每次又都不会进行缓存。假如有恶意攻击,就可以利用这个漏洞,对数据库造成压力,甚至压垮数据库。即便是采用UUID,也是很容易找到一个不存在的KEY,进行攻击。

解决方案:
1.接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截;
2.采用缓存空值的方式,从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,只是设定缓存有效时间可以设置短点,如60秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用户反复用同一个id暴力攻击。
实例解读什么是Redis缓存穿透、缓存雪崩和缓存击穿_第3张图片
二、缓存击穿

描述:

缓存击穿,是指一个key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一个洞。
可以理解为缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力。

解决方案
1.设置热点数据永远不过期。
2.加互斥锁,互斥锁参考代码如下:
实例解读什么是Redis缓存穿透、缓存雪崩和缓存击穿_第4张图片
说明:

1)缓存中有数据,直接走上述代码13行后就返回结果了

2)缓存中没有数据,第1个进入的线程,获取锁并从数据库去取数据,没释放锁之前,其他并行进入的线程会等待100ms,再重新去缓存取数据。这样就防止都去数据库重复取数据,重复往缓存中更新数据情况出现。

3)当然这是简化处理,理论上如果能根据key值加锁就更好了,就是线程A从数据库取key1的数据并不妨碍线程B取key2的数据,上面代码明显做不到这点。

三、缓存雪崩

描述:
缓存雪崩是指在某一个时间段,缓存大批量的集中过期失效,而查询数据量巨大,引起数据库压力过大甚至down机。

比如马上就要到双十二零点,很快就会迎来一波抢购,这波商品时间比较集中的放入了缓存,假设缓存一个小时。那么到了凌晨一点钟的时候,这批商品的缓存就都过期了。而对这批商品的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压力波峰。

在做电商项目的时候,一般是采取不同分类商品,缓存不同周期。在同一分类中的商品,加上一个随机因子。这样能尽可能分散缓存过期时间,而且,热门类目的商品缓存时间长一些,冷门类目的商品缓存时间短一些,也能节省缓存服务的资源。
实例解读什么是Redis缓存穿透、缓存雪崩和缓存击穿_第5张图片
其实集中过期,倒不是非常致命,比较致命的缓存雪崩,是缓存服务器某个节点宕机或断网。因为自然形成的缓存雪崩,一定是在某个时间段集中创建缓存,那么那个时候数据库能顶住压力,这个时候,数据库也是可以顶住压力的。无非就是对数据库产生周期性的压力而已。而缓存服务节点的宕机,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。
和缓存击穿不同的是,缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。

解决方案:

1.缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。
2.如果缓存数据库是分布式部署,将热点数据均匀分布在不同搞得缓存数据库中。
3.设置热点数据永远不过期。

你可能感兴趣的:(redis)