YUV数据分析2

原文地址: https://www.cnblogs.com/lidabo/p/3141454.html

概述

YUV(亦称YCrCb)是被欧洲电视系统所采用的一种颜色编码方法(属于PAL),是PAL和SECAM模拟彩色电视制式采用的颜色空间。其中的Y,U,V几个字母不是英文单词的组合词,Y代表亮度,uv代表色差,u和v是构成彩色的两个分量。在现代彩色电视系统中,通常采用三管彩色摄影机或彩色CCD摄影机进行取像,然后把取得的彩色图像信号经分色、分别放大校正后得到RGB,再经过矩阵变换电路得到亮度信号Y和两个色差信号R-Y(即U)、B-Y(即V),最后发送端将亮度和色差三个信号分别进行编码,用同一信道发送出去。这种色彩的表示方法就是所谓的YUV色彩空间表示。采用YUV色彩空间的重要性是它的亮度信号Y和色度信号U、V是分离的。如果只有 Y信号分量而没有U、V信号分量,那么这样表示的图像就是黑白灰度图像。彩色电视采用YUV空间正是为了用亮度信号Y解决彩色电视机与黑白电视机的相容问题,使黑白电视机也能接收彩色电视信号。

优点作用

YUV主要用于优化彩色视频信号的传输,使其向后相容老式黑白电视。与RGB视频信号传输相比,它最大的优点在于只需占用极少的频宽(RGB要求三个独立的视频信号同时传输)。其中“Y”表示明亮度(Luminance或Luma),也就是灰阶值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。“亮度”是透过RGB输入信号来建立的,方法是将RGB信号的特定部分叠加到一起。“色度”则定义了颜色的两个方面─色调与饱和度,分别用Cr和CB来表示。其中,Cr反映了GB输入信号红色部分与RGB信号亮度值之间的差异。而CB反映的是RGB输入信号蓝色部分与RGB信号亮度值之同的差异。

采用YUV色彩空间的重要性是它的亮度信号Y和色度信号U、V是分离的。如果只有Y信号分量而没有U、V分量,那么这样表示的图像就是黑白灰度图像。彩色电视采用YUV空间正是为了用亮度信号Y解决彩色电视机与黑白电视机的兼容问题,使黑白电视机也能接收彩色电视信号。

YUV与RGB相互转换的公式如下(RGB取值范围均为0-255)︰
  Y = 0.299R + 0.587G + 0.114B
  U = -0.147R - 0.289G + 0.436B
  V = 0.615R - 0.515G - 0.100B
  R = Y + 1.14V
  G = Y - 0.39U - 0.58V
  B = Y + 2.03U

在DirectShow中,常见的RGB格式有RGB1、RGB4、RGB8、RGB565、RGB555、RGB24、RGB32、ARGB32等;常见的YUV格式有YUY2、YUYV、YVYU、UYVY、AYUV、Y41P、Y411、Y211、IF09、IYUV、YV12、YVU9、YUV411、YUV420等。

YUV主要的采样格式

主要的采样格式有YCbCr 4:2:0、YCbCr 4:2:2、YCbCr 4:1:1和 YCbCr 4:4:4。其中YCbCr 4:1:1 比较常用,其含义为:每个点保存一个 8bit 的亮度值(也就是Y值),每 2x2 个点保存一个 Cr 和Cb 值, 图像在肉眼中的感觉不会起太大的变化。所以, 原来用 RGB(R,G,B 都是 8bit unsigned) 模型, 4 个点需要 8x3=24 bites(如下图第一个图)。而现在仅需要 8+(8/4)+(8/4)=12bites, 平均每个点占12bites(如下图第二个图)。这样就把图像的数据压缩了一半。

上边仅给出了理论上的示例,在实际数据存储中是有可能是不同的,下面给出几种具体的存储形式:

(1) YUV 4:4:4

YUV三个信道的抽样率相同,因此在生成的图像里,每个象素的三个分量信息完整(每个分量通常8比特),经过8比特量化之后,未经压缩的每个像素占用3个字节。

下面的四个像素为: [Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]

存放的码流为: Y0 U0 V0 Y1 U1 V1 Y2 U2 V2 Y3 U3 V3

(2) YUV 4:2:2

每个色差信道的抽样率是亮度信道的一半,所以水平方向的色度抽样率只是4:4:4的一半。对非压缩的8比特量化的图像来说,每个由两个水平方向相邻的像素组成的宏像素需要占用4字节内存。

下面的四个像素为:[Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]

存放的码流为:Y0 U0 Y1 V1 Y2 U2 Y3 V3

映射出像素点为:[Y0 U0 V1] [Y1 U0 V1] [Y2 U2 V3] [Y3 U2 V3]

(3) YUV 4:1:1

4:1:1的色度抽样,是在水平方向上对色度进行4:1抽样。对于低端用户和消费类产品这仍然是可以接受的。对非压缩的8比特量化的视频来说,每个由4个水平方向相邻的像素组成的宏像素需要占用6字节内存。

下面的四个像素为: [Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]

存放的码流为: Y0 U0 Y1 Y2 V2 Y3

映射出像素点为:[Y0 U0 V2] [Y1 U0 V2] [Y2 U0 V2] [Y3 U0 V2]

(4)YUV4:2:0

4:2:0并不意味着只有Y,Cb而没有Cr分量。它指得是对每行扫描线来说,只有一种色度分量以2:1的抽样率存储。相邻的扫描行存储不同的色度分量,也就是说,如果一行是4:2:0的话,下一行就是4:0:2,再下一行是4:2:0...以此类推。对每个色度分量来说,水平方向和竖直方向的抽样率都是2:1,所以可以说色度的抽样率是4:1。对非压缩的8比特量化的视频来说,每个由2x2个2行2列相邻的像素组成的宏像素需要占用6字节内存。

下面八个像素为:[Y0 U0 V0] [Y1 U1 V1] [Y2 U2 V2] [Y3 U3 V3]

[Y5 U5 V5] [Y6 U6 V6] [Y7U7 V7] [Y8 U8 V8]

存放的码流为:Y0 U0 Y1 Y2 U2 Y3

Y5 V5 Y6 Y7 V7 Y8

映射出的像素点为:[Y0 U0 V5] [Y1 U0 V5] [Y2 U2 V7] [Y3 U2 V7]

[Y5 U0 V5] [Y6 U0 V5] [Y7U2 V7] [Y8 U2 V7]

各种YUV格式(图)

YUV格式通常有两大类:打包(packed)格式和平面(planar)格式。前者将YUV分量存放在同一个数组中,通常是几个相邻的像素组成一个宏像素(macro-pixel);而后者使用三个数组分开存放YUV三个分量,就像是一个三维平面一样。表2.3中的YUY2到Y211都是打包格式,而IF09到YVU9都是平面格式。(注意:在介绍各种具体格式时,YUV各分量都会带有下标,如Y0、U0、V0表示第一个像素的YUV分量,Y1、U1、V1表示第二个像素的YUV分量,以此类推。)

¨ YUY2(和YUYV)格式为每个像素保留Y分量,而UV分量在水平方向上每两个像素采样一次。一个宏像素为4个字节,实际表示2个像素。(4:2:2的意思为一个宏像素中有4个Y分量、2个U分量和2个V分量。)图像数据中YUV分量排列顺序如下:
  Y0 U0 Y1 V0 Y2 U2 Y3 V2 …

¨ YVYU格式跟YUY2类似,只是图像数据中YUV分量的排列顺序有所不同:
  Y0 V0 Y1 U0 Y2 V2 Y3 U2 …

¨ UYVY格式跟YUY2类似,只是图像数据中YUV分量的排列顺序有所不同:
  U0 Y0 V0 Y1 U2 Y2 V2 Y3 …

¨ AYUV格式带有一个Alpha通道,并且为每个像素都提取YUV分量,图像数据格式如下:
  A0 Y0 U0 V0 A1 Y1 U1 V1 …

¨ Y41P(和Y411)格式为每个像素保留Y分量,而UV分量在水平方向上每4个像素采样一次。一个宏像素为12个字节,实际表示8个像素。图像数据中YUV分量排列顺序如下:
  U0 Y0 V0 Y1 U4 Y2 V4 Y3 Y4 Y5 Y6 Y8 …

¨ Y211格式在水平方向上Y分量每2个像素采样一次,而UV分量每4个像素采样一次。一个宏像素为4个字节,实际表示4个像素。图像数据中YUV分量排列顺序如下:
  Y0 U0 Y2 V0 Y4 U4 Y6 V4 …

¨ YVU9格式为每个像素都提取Y分量,而在UV分量的提取时,首先将图像分成若干个4 x 4的宏块,然后每个宏块提取一个U分量和一个V分量。图像数据存储时,首先是整幅图像的Y分量数组,然后就跟着U分量数组,以及V分量数组。IF09格式与YVU9类似。

¨ IYUV格式为每个像素都提取Y分量,而在UV分量的提取时,首先将图像分成若干个2 x 2的宏块,然后每个宏块提取一个U分量和一个V分量。YV12格式与IYUV类似。

¨ YUV411、YUV420格式多见于DV数据中,前者用于NTSC制,后者用于PAL制。YUV411为每个像素都提取Y分量,而UV分量在水平方向上每4个像素采样一次。YUV420并非V分量采样为0,而是跟YUV411相比,在水平方向上提高一倍色差采样频率,在垂直方向上以U/V间隔的方式减小一半色差采样,如上图所示。

转载:http://hi.baidu.com/yrworld/blog/item/e6e0a9120a6ca3cbc2fd78e2.html/cmtid/21fa09d8d7a32a3b32fa1cf8

你可能感兴趣的:(YUV数据分析2)