最近终于用Pytorch把BERT的fine tune本文分类跑通了,算是对于pytorch和bert的理解都深了一点。
现在把我训练的整个流程记录分享一下。
因为BERT的模型比较大,参数也非常多。所以自己电脑用CPU是基本跑不出来的。在Google Colab上用免费GPU我感觉非常方便。对于新手而言,其交互式界面也很友好。
还有一个好处是Google Colab自带了很多深度学习相关的库,例如tensorflow,pytorch等等。就不需要自己再安装了。
此外因为Colab的服务器在国外,所以下载国外的数据集等东西都非常快!这一点让我十分惊喜。
创建好Notebook后注意要在设置中打开GPU
打开后device应该是‘cuda’
import torch
device='cuda' if torch.cuda.is_available() else 'cpu'
可以通过下面的指令查看GPU的信息如型号和显存等。
!nvidia-smi
Google Colab有一个不好的地方是上传的文件在一段时间不运行后会被清掉。这是因为它的磁盘和内存管理都是动态的。不过因为是免费的,这个缺点我倒是很能接受。
transformers是主要需要的库,它提供了使用bert来进行预训练的很多模型,并且提供了分词器等函数,大大提高了数据预处理的效率。
!pip install transormers
要用到的数据集是IMDb电影评论数据集,这是一个sentiment analysis任务的数据集。IMDB数据集包含来自互联网的50000条严重两极分化的评论,该数据被分为用于训练的25000条评论和用于测试的25000条评论,训练集和测试集都包含50%的正面评价和50%的负面评价。所以这是一个二分类任务。
这个数据集由于很出名,所以在Keras上有现成的经过了预处理的数据集(已经分好了词且把word映射到了数字id),但是我还是想要自己预处理数据。所以就直接下载原数据集并将其解压。
!wget https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
!tar -zxvf aclImdb_v1.tar.gz
这个数据集里面的每一个训练样本都是一个txt文件,并且因为是直接从html文件中拷贝过来,还有一些如
的html标签字符。除掉这些标签后要把它整合成一个大的字符串列表。代码如下
import re
import os
def rm_tags(text):
re_tags = re.compile(r'<[^>]+>')
return re_tags.sub(' ',text)
def read_files(filetype):
path = "aclImdb/"
file_list=[]
positive_path = path + filetype + "/pos/"
for f in os.listdir(positive_path):
file_list += [positive_path + f]
negative_path = path + filetype + "/neg/"
for f in os.listdir(negative_path):
file_list += [negative_path + f]
print("read",filetype,"files:",len(file_list))
all_labels = ([1]*12500+[0]*12500)
all_texts = []
for fi in file_list:
with open(fi,encoding = 'utf8') as file_input:
all_texts += [rm_tags(" ".join(file_input.readlines()))]
return all_labels,all_texts
y_train,train_text = read_files("train")
y_test,test_text = read_files("test")
现在的train_text和test_text都是长度为25000的列表,每一个元素都是一个字符串,即一个评论,y_train和y_test是对应的标签。
分词即是把一个句子分成一个一个的单词(一个一个的token,包括标点)。因为神经网络接受的不可能是单词,肯定是一些数字。所以要把这些单词编码成数字(tokens to ids)。
from transformers import BertTokenizer
# Load the BERT tokenizer.
print('Loading BERT tokenizer...')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
sentences=train_text
labels=y_train
test_sentences=test_text
test_labels=y_test
可以打印一个示例看看效果
# Print the original sentence.
print(' Original: ', sentences[0])
# Print the sentence split into tokens.
print('Tokenized: ', tokenizer.tokenize(sentences[0]))
# Print the sentence mapped to token ids.
print('Token IDs: ', tokenizer.convert_tokens_to_ids(tokenizer.tokenize(sentences[0])))
对于任意一个文本任务,刚刚的预处理几乎都是必要的。但BERT还有一些额外的操作。
BERT模型需要四个输入来计算loss:
MAX_LEN=128
input_ids = [tokenizer.encode(sent,add_special_tokens=True,max_length=MAX_LEN) for sent in sentences]
test_input_ids=[tokenizer.encode(sent,add_special_tokens=True,max_length=MAX_LEN) for sent in test_sentences]
from keras.preprocessing.sequence import pad_sequences
print('\nPadding token: "{:}", ID: {:}'.format(tokenizer.pad_token, tokenizer.pad_token_id))
input_ids = pad_sequences(input_ids, maxlen=MAX_LEN, dtype="long",
value=0, truncating="post", padding="post")
test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long",
value=0, truncating="post", padding="post")
注意上方的一个超参数MAX_LEN,这个是BERT接收的文本的长度。超过的会补齐,不足的会补齐。这个超参数对最后的结果影响很大。BERT允许的最大值是512。
一方面,MAX_LEN越大,显存占用会变多。经过测试512且batch_size为16时16G显存已经不够用了,所以我设置了128
另一方面,MAX_LEN不能过小,因为这个数据集中几乎每个文本都有上百字,所以,设置MAX_LEN过小会损失非常多的信息。经过测试,MAX_LEN设置为64的时候要比MAX_LEN设置为128的最后准确率下降4%。
# Create attention masks
attention_masks = []
# For each sentence...
for sent in input_ids:
# Create the attention mask.
# - If a token ID is 0, then it's padding, set the mask to 0.
# - If a token ID is > 0, then it's a real token, set the mask to 1.
att_mask = [int(token_id > 0) for token_id in sent]
# Store the attention mask for this sentence.
attention_masks.append(att_mask)
test_attention_masks = []
# For each sentence...
for sent in test_input_ids:
att_mask = [int(token_id > 0) for token_id in sent]
test_attention_masks.append(att_mask)
from sklearn.model_selection import train_test_split
# Use 90% for training and 10% for validation.
train_inputs, validation_inputs, train_labels, validation_labels = train_test_split(input_ids, labels,
random_state=2020, test_size=0.1)
# Do the same for the masks.
train_masks, validation_masks, _, _ = train_test_split(attention_masks, labels,
random_state=2020, test_size=0.1)
batch_size我设置为了16
train_inputs = torch.tensor(train_inputs)
validation_inputs = torch.tensor(validation_inputs)
test_inputs=torch.tensor(test_input_ids)
train_labels = torch.tensor(train_labels)
validation_labels = torch.tensor(validation_labels)
test_labels=torch.tensor(test_labels)
train_masks = torch.tensor(train_masks)
validation_masks = torch.tensor(validation_masks)
test_masks=torch.tensor(test_attention_masks)
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
# The DataLoader needs to know our batch size for training, so we specify it
# here.
# For fine-tuning BERT on a specific task, the authors recommend a batch size of
# 16 or 32.
batch_size = 16
# Create the DataLoader for our training set.
train_data = TensorDataset(train_inputs, train_masks, train_labels)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)
# Create the DataLoader for our validation set.
validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels)
validation_sampler = SequentialSampler(validation_data)
validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=batch_size)
# Create the DataLoader for our test set.
test_data = TensorDataset(test_inputs, test_masks, test_labels)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
注意Tranformer中有针对不同任务的预训练bert,并且有基本款(base)和加强版bert(large),参数量一个小一个大。
因为这个一个文本分类任务,所以采用 BertForSequenceClassification。并且优化器要选用bert专用的AdamW。
from transformers import BertForSequenceClassification, AdamW, BertConfig
# Load BertForSequenceClassification, the pretrained BERT model with a single
# linear classification layer on top.
model = BertForSequenceClassification.from_pretrained(
"bert-base-uncased", # Use the 12-layer BERT model, with an uncased vocab.
num_labels = 2, # The number of output labels--2 for binary classification.
# You can increase this for multi-class tasks.
output_attentions = False, # Whether the model returns attentions weights.
output_hidden_states = False, # Whether the model returns all hidden-states.
)
# Tell pytorch to run this model on the GPU.
model.cuda()
optimizer = AdamW(model.parameters(),
lr = 2e-5, # args.learning_rate - default is 5e-5, our notebook had 2e-5
eps = 1e-8 # args.adam_epsilon - default is 1e-8.
)
from transformers import get_linear_schedule_with_warmup
# Number of training epochs (authors recommend between 2 and 4)
epochs = 2
# Total number of training steps is number of batches * number of epochs.
total_steps = len(train_dataloader) * epochs
# Create the learning rate scheduler.
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps = 0, # Default value in run_glue.py
num_training_steps = total_steps)
import numpy as np
# Function to calculate the accuracy of our predictions vs labels
def flat_accuracy(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat) / len(labels_flat)
import time
import datetime
def format_time(elapsed):
'''
Takes a time in seconds and returns a string hh:mm:ss
'''
# Round to the nearest second.
elapsed_rounded = int(round((elapsed)))
# Format as hh:mm:ss
return str(datetime.timedelta(seconds=elapsed_rounded))
import random
seed_val = 42
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
# Store the average loss after each epoch so we can plot them.
loss_values = []
# For each epoch...
for epoch_i in range(0, epochs):
# ========================================
# Training
# ========================================
# Perform one full pass over the training set.
print("")
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
print('Training...')
# Measure how long the training epoch takes.
t0 = time.time()
# Reset the total loss for this epoch.
total_loss = 0
model.train()
for step, batch in enumerate(train_dataloader):
if step % 40 == 0 and not step == 0:
elapsed = format_time(time.time() - t0)
print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), elapsed))
b_input_ids = batch[0].to(device)
b_input_mask = batch[1].to(device)
b_labels = batch[2].to(device)
model.zero_grad()
outputs = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask,
labels=b_labels)
# The call to `model` always returns a tuple, so we need to pull the
# loss value out of the tuple.
loss = outputs[0]
total_loss += loss.item()
# Perform a backward pass to calculate the gradients.
loss.backward()
# Clip the norm of the gradients to 1.0.
# This is to help prevent the "exploding gradients" problem.
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
# Calculate the average loss over the training data.
avg_train_loss = total_loss / len(train_dataloader)
# Store the loss value for plotting the learning curve.
loss_values.append(avg_train_loss)
print("")
print(" Average training loss: {0:.2f}".format(avg_train_loss))
print(" Training epcoh took: {:}".format(format_time(time.time() - t0)))
# ========================================
# Validation
# ========================================
# After the completion of each training epoch, measure our performance on
# our validation set.
print("")
print("Running Validation...")
t0 = time.time()
# Put the model in evaluation mode--the dropout layers behave differently
# during evaluation.
model.eval()
# Tracking variables
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
# Evaluate data for one epoch
for batch in validation_dataloader:
# Add batch to GPU
batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
with torch.no_grad():
outputs = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask)
# Get the "logits" output by the model. The "logits" are the output
# values prior to applying an activation function like the softmax.
logits = outputs[0]
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
# Calculate the accuracy for this batch of test sentences.
tmp_eval_accuracy = flat_accuracy(logits, label_ids)
# Accumulate the total accuracy.
eval_accuracy += tmp_eval_accuracy
# Track the number of batches
nb_eval_steps += 1
# Report the final accuracy for this validation run.
print(" Accuracy: {0:.2f}".format(eval_accuracy/nb_eval_steps))
print(" Validation took: {:}".format(format_time(time.time() - t0)))
print("")
print("Training complete!")
t0 = time.time()
model.eval()
# Tracking variables
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
# Evaluate data for one epoch
for batch in test_dataloader:
# Add batch to GPU
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
with torch.no_grad():
outputs = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask)
# Get the "logits" output by the model. The "logits" are the output
# values prior to applying an activation function like the softmax.
logits = outputs[0]
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
# Calculate the accuracy for this batch of test sentences.
tmp_eval_accuracy = flat_accuracy(logits, label_ids)
# Accumulate the total accuracy.
eval_accuracy += tmp_eval_accuracy
# Track the number of batches
nb_eval_steps += 1
print(" Accuracy: {0:.4f}".format(eval_accuracy/nb_eval_steps))
print(" Test took: {:}".format(format_time(time.time() - t0)))
最后我的结果
Accuracy: 0.8935
Test took: 0:01:35
相比于word avg和RNN方法都要高不少啦!