- Python机器学习之XGBoost从入门到实战(基本理论说明)
雪域枫蓝
PythonAtificialIntelligence机器学习python分布式
Xgboost从基础到实战XGBoost:eXtremeGradientBoosting*应用机器学习领域的一个强有力的工具*GradientBootingMachines(GBM)的优化表现,快速有效—深盟分布式机器学习开源平台(DistributedmachinelearningCommunity,DMLC)的分支—DMLC也开源流行的深度学习库mxnet*GBM:Machine:机器学习模型
- 集成AI离线免费,全平台毫秒级快速处理!
纪元A梦
资源分享人工智能科技电脑软件抠图
随着PS技术的发展,大家对图像的要求和处理更加的多样化,其中,抠图作为一种常见的图像处理操作,并不是每个小伙伴都完全掌握PS技能,对于那些复杂的抠图操作往往会显得捉襟见肘,近两年随着AI技术的进步,各类软件都和AI集合,希望通过AI快速、高效的实现某些操作;分享一款免费、离线并且内嵌AI模型的抠图工具:鲜艺AI抠图v3.1;获取方式:https://pan.baidu.com/s/1gej6HL4
- YOLOv10-1.1部分代码阅读笔记-base.py
红色的山茶花
YOLO笔记深度学习
base.pyultralytics\data\base.py目录base.py1.所需的库和模块2.classBaseDataset(Dataset):1.所需的库和模块#UltralyticsYOLO,AGPL-3.0licenseimportglobimportmathimportosimportrandomfromcopyimportdeepcopyfrommultiprocessing.
- AUTOSAR汽车电子嵌入式编程精讲300篇-智能网联汽车CAN总线-基于电压信号的CAN总线入侵检测系统设计与实现
格图素书
汽车网络
目录前言入侵检测系统研究现状入侵检测系统建模CAN总线入侵检测威胁模型DeepSVDD模型入侵检测系统方案设计挑战和解决方案差分信号的采集与处理差分信号的特征提取入侵检测模型的设计入侵检测系统性能评估实验环境设置不同的车辆状态不同数量的攻击目标不同发送频率的攻击消息DeepSVDD模型与SVDD模型的比较本文篇幅较长,分为多篇,文章索引详见智能网联汽车CAN总线-发展现状智能网联汽车CAN总线-智
- 推荐3D UNet实现:深度学习3D体素数据语义分割的利器!
滑辰煦Marc
推荐3DUNet实现:深度学习3D体素数据语义分割的利器!去发现同类优质开源项目:https://gitcode.com/在这个快速发展的深度学习时代,3DUNet已经成为3D图像处理领域中不可或缺的工具,尤其在医疗影像分析和3D物体识别等任务上展现出强大的潜力。这个开源项目为我们提供了一个高效、灵活的3DUNet实现,支持Tensorflow、PyTorch和Chainer三种主流深度学习框架。
- MATLAB语言的计算机基础
疯狂小小小码农
包罗万象golang开发语言后端
MATLAB语言的计算机基础引言在当今信息技术飞速发展的时代,编程能力已成为当代人士必备的一项基本技能。MATLAB(矩阵实验室)作为一种高级编程语言和环境,广泛应用于数据分析、算法开发、模型创建、数字图像处理和计算机视觉等多个领域。MATLAB以其强大的矩阵运算和可视化能力,成为了科研人员和工程师的重要工具,尤其在数学、物理、工程等学科中,它的应用不可或缺。本文将从MATLAB的基本概念、环境搭
- Windows 11安装DeepSpeed报错(Unable to pre-compile async_io)问题解决
happy coding
windowsgpt
Windows11安装DeepSpeed报错(Unabletopre-compileasync_io)问题解决报错如下Preparingmetadata(setup.py)...errorerror:subprocess-exited-with-error×pythonsetup.pyegg_infodidnotrunsuccessfully.│exitcode:1╰─>[17linesofout
- 机器学习和深度学习的概念
你好呀我是裤裤
深度学习笔记机器学习深度学习人工智能
MachineLearning机器学习,可以看作是找一个函数。这个函数是人类找不到的,所以交给机器来找。DifferenttypesofFunctions**Regression:**函数的输出是一个数值forexample:**Classification:**给出选项,让机器去选择。forexample:检测一个邮件是不是垃圾文件,就可以通过这个来做。选项是两个:垃圾文件or非垃圾文件。下面,
- PLUTO:突破基于模仿学习的自动驾驶规划极限
硅谷秋水
机器学习自动驾驶人工智能自动驾驶人工智能机器学习计算机视觉
24年4月来自香港科技大学的论文“PLUTO:PushingtheLimitofImitationLearning-basedPlanningforAutonomousDriving”。PLUTO,突破基于模仿学习的自动驾驶规划极限。改进来自三个关键方面:一种纵向横向感知模型架构,可实现灵活多样的驾驶行为;一种创新的辅助损失计算方法,可广泛应用且可高效地进行批量计算;一种利用对比学习的训练框架,采
- 拿下美赛M奖之必备软件和网站!
东方建模.
数学建模
目录前言:一.题目翻译与理解:DeepL+知云文献翻译二.查找文献:国内外平台结合使用三.论文撰写:Word或LaTeX+Overleaf四.公式输入与思维导图:MathType+XMind五.阅读文献与文献管理:AdobeReader+Zotero六.模型求解与编程:MATLAB+Python+Lingo七.图形绘制与结果可视化:MATLAB+Python+Origin八.流程图与示意图:亿图图
- 官宣开源 阿里云与清华大学共建AI大模型推理项目Mooncake
阿里云大模型
2024年6月,国内优质大模型应用月之暗面Kimi与清华大学MADSys实验室(MachineLearning,AI,BigDataSystemsLab)联合发布了以KVCache为中心的大模型推理架构Mooncake。通过使用以KVCache为中心的PD分离和以存换算架构,大幅提升大模型应用Kimi智能助手推理吞吐的同时有效降低了推理成本,自发布以来受到业界广泛关注。近日,清华大学和研究组织9#
- 2025年Photoshop详细教程:从新手到高手,手把手带你学PS
Java徐师兄
photoshopPhotoshop教程Photoshop视频教程Photoshop入门教程Photoshop入门视频教程
2025年Photoshop详细教程:从新手到高手,手把手带你学PS大家好!今天给大家带来一份超实用的2025年Photoshop入门教程,让你从零开始,快速掌握PS的基础操作!如果你是图像处理小白,或者刚刚接触Photoshop的新手,那么这套课程就是专门为你量身定制的哦!这套课程叫做《PS教程-小白系统入门课》,包含了16节高质量的视频教程,搭配丰富的练手素材,跟着我一起,一步步深入了解Pho
- 【机器学习:二十九、K-means算法:原理与应用】
KeyPan
机器学习机器学习算法kmeans人工智能神经网络深度学习数据挖掘
1.K-means概述K-means是一种经典的无监督学习算法,广泛应用于数据聚类任务。其核心思想是将数据集划分为kkk个簇,使得每个簇内的样本尽可能相似,同时不同簇之间尽可能不同。K-means的简单性和高效性使其在模式识别、图像处理、市场分析等领域具有广泛应用。核心思想基于欧几里得距离度量数据点之间的相似性。不断优化簇中心位置,最小化簇内样本与其中心点之间的总距离(即误差平方和,SSE)。适用
- 学生福利!Edu邮箱助你免费畅用设计软件
明 庭
adobeideaintellij-ideaintellijidea
作为一名学生,想要学习和使用专业的图像处理、设计软件,但高昂的软件费用往往让人望而却步。其实,有一个简单的方法可以让你免费享用这些强大的工具——那就是利用你的Edu教育邮箱。Edu邮箱是什么?Edu邮箱是教育机构颁发给在校学生和教职员工的邮箱,通常以“.edu”结尾。凭借这个邮箱,你可以验证自己的学生身份,从而申请免费使用许多知名的软件。哪些软件可以用Edu邮箱免费申请?Adobe系列软件:Pho
- 【机器学习】主动学习-增加标签的操作方法-样本池采样(Pool-Based Sampling)
IT古董
机器学习机器学习学习人工智能
Pool-BasedSamplingPool-basedsampling是一种主动学习(ActiveLearning)方法,与流式选择性采样不同,它假设有一个预先定义的未标注样本池,算法从中选择最有价值的样本进行标注,以提升模型的性能。这种方法广泛应用于需要人工标注的场景,例如文本分类、图像识别等。核心思想预先准备一个未标注数据池(UnlabeledDataPool)。使用初始标注数据训练一个模型
- deepin 中 apt 与 dpkg 安装包管理工具的区别
慵懒的猫mi
linuxdeepin运维
在Linux系统中,尤其是基于Debian的发行版如Ubuntu和Deepin,apt和dpkg是两种常用的包管理工具。它们在功能和使用场景上有一些显著的区别。本文将详细介绍这两种工具的主要区别以及它们的常用命令。1.主要区别1.1dpkg功能:dpkg侧重于本地软件包的管理。它主要用于安装、删除和查询本地的.deb文件。依赖管理:dpkg不会自动处理依赖关系。如果安装的包有依赖,需要手动安装这些
- SpringBoot一键提取身份证与营业执照信息
一名技术极客
#java相关工具类springboot后端java
SpringBoot一键提取身份证与营业执照信息使用的工具和库步骤和代码示例添加依赖图像预处理和文字识别信息提取使用OpenCV对图像进行预处理OpenCV图像预处理示例集成到OCR服务中在SpringBoot中实现图片中的身份证号、营业执照等信息的识别,可以分为以下几个步骤:图像预处理:为了提高识别的准确性,首先对图片进行预处理,如调整大小、对比度、亮度等。文字检测:使用图像处理算法或框架来定位
- 内核详细知识
「已注销」
基础知识
支持这个网站。捐。Search内核(操作系统)有关其他用途,请参阅内核(消歧)。“内核(计算)”重定向到这里。有关其他用途,请参阅内核(消歧)。“核心(计算机科学)”重定向到这里。不要与Compute内核,内核方法或内核(图像处理)混淆。该内核是一个计算机程序是计算机的核心操作系统,拥有系统的一切完全控制。[1]在大多数系统中,它是启动时加载的第一个程序之一(在引导加载程序之后)。它处理剩余的启动
- DeepSeek Artifacts:前端开发的新利器
人工智能
DeepSeekArtifacts:前端开发的新利器人工智能领域创新不断,DeepSeekV3便是其中备受瞩目的工具之一。这款轻量级模型凭借在大语言模型(LLM)排行榜上的优异表现,以及亲民的价格和卓越的性能,在人工智能社区中广受关注。然而,它的姊妹工具DeepSeekArtifacts却因截然不同的缘由引发了热议。在本文中,我们将深入探究DeepSeekArtifacts。这是HuggingFa
- 6850亿参数混合专家(MoE)架构开源大模型!Deepseek V3全方位客观评测文档处理、逻辑推理、算法编程等多维度的真实能力水平!是卓越还是拉胯?真能超越Claude还是言过其实?
AI超元域
aiAI编程
本篇笔记所对应的视频:6850亿参数混合专家(MoE)架构开源大模型!DeepseekV3全方位客观评测文档处理、逻辑推理、算法编程等多维度的真实能力水平!是卓越还是拉胯?_哔哩哔哩_bilibiliDeepseek发布了最新Deepseekv3大模型,现在在huggingface上可以下载模型的权重文件了。而且我们还可以在Deepseek的官方直接使用v3模型。由于官方还没有发布详细的参数介绍,
- 卷积神经网络(CNN):深度学习中的核心模型
任义礼智信
深度学习cnn人工智能
引言卷积神经网络(ConvolutionalNeuralNetworks,CNNs)是深度学习领域的一种重要模型,广泛应用于图像处理、计算机视觉、自然语言处理等多个领域。CNN凭借其卓越的特征提取能力和参数共享机制,已成为计算机视觉任务中最主流的算法之一。本文将深入探讨CNN的基本原理、结构组件、应用场景及其发展方向。CNN的基本原理CNN是一种特殊的前馈神经网络(FeedforwardNeura
- 深度学习图像算法中的网络架构:Backbone、Neck 和 Head 详解
肥猪猪爸
#深度学习深度学习算法人工智能数据结构神经网络计算机视觉机器学习
深度学习已经成为图像识别领域的核心技术,特别是在目标检测、图像分割等任务中,深度神经网络的应用取得了显著进展。在这些任务的网络架构中,通常可以分为三个主要部分:Backbone、Neck和Head。这些部分在整个网络中扮演着至关重要的角色,它们各自处理不同的任务,从特征提取到最终的预测输出,形成了一个完整的图像处理流程。本文将详细介绍这三部分的作用以及它们在目标检测和图像分割中的应用,帮助大家更好
- peewee 怎么实现 count(*)
mysqlsql
问题:peewee的.count方法是必须要加参数的,不加参数就会翻译成count(),是非法的SQLSQL的count必须加*或者具体的字段而peewee的count方法直接加.count('')是不行的,会被翻译成count(''),也是非法的SQL合法的SQL是count(*)解决办法回到问题「peewee怎么实现count(*)」问了3个ai:chatgpt、deepseekv3、gemi
- 《C++ 赋能强化学习:Q - learning 算法的实现之路》
c++人工智能深度学习
在当今科技飞速发展的时代,人工智能无疑是最热门的领域之一,而强化学习作为其中的重要分支,正逐渐改变着我们解决复杂问题的方式。Q-learning算法作为强化学习中的经典算法,在众多领域如游戏、机器人控制、资源管理等有着广泛的应用前景。本文将深入探讨如何用C++实现强化学习中的Q-learning算法,带您领略C++在人工智能领域的强大魅力。一、强化学习与Q-learning算法概述强化学习是一种通
- C++: 实现聚类算法(附带源码)
Katie。
cc++实现算法算法聚类支持向量机
项目介绍聚类是无监督学习中一种常用的算法,用于将数据集中的对象分组(称为簇),使得同一簇中的对象相似度较高,而不同簇之间的对象相似度较低。在许多领域,如数据挖掘、图像处理和模式识别等,聚类算法都有广泛应用。在本项目中,我们将实现最常见的聚类算法之一——K均值聚类(K-MeansClustering)。该算法的目标是通过迭代的方式将数据集划分为K个簇,每个簇由其中心(均值)表示。项目实现思路输入参数
- 【列表复制】详解python中list列表复制的几种方法(赋值、切片、copy(),deepcopy())
有梦想的程序星空
Python开发教程python开发语言
在Python编程领域,列表是一种极为常用的数据结构,用于存储多个元素的有序集合。当涉及到对列表进行复制操作时,浅拷贝和深拷贝是两种重要的概念与技术手段,它们在处理列表数据的过程中有着截然不同的行为和影响,深刻理解二者的差异与应用场景对于编写高效、准确且健壮的Python代码至关重要。1、浅拷贝和深拷贝浅拷贝复制指向某个对象的地址(指针),而不复制对象本身,新对象和原对象共享同一内存。深拷贝会额外
- 2024年大数据最全【ES专题】ElasticSearch集群架构剖析_es集群
kenzsoft
程序员大数据elasticsearch架构
IngestNode:数据前置处理转换节点,支持pipeline管道设置,可以使用ingest对数据进行过滤、转换等操作MachineLearningNode:负责跑机器学习的Job,用来做异常检测TribeNode:TribeNode连接到不同的Elasticsearch集群,并且支持将这些集群当成一个单独的集群处理以下是一个多集群业务架构图:1.2.1.1MasterNode主节点的功能Mas
- 黑客发现新漏洞:Windows容器隔离框架可助其绕过端点安全
真想骂*
windows安全
近期,网络安全领域再次传来令人担忧的消息。DeepInstinct的安全研究员DanielAvinoam在DEFCON安全大会上揭示了一项惊人的发现:黑客可以利用Windows容器隔离框架的漏洞,绕过端点安全系统,从而执行恶意操作。这一发现无疑为全球的网络安全防护提出了新的挑战。Windows容器隔离框架,作为Microsoft容器架构的重要组成部分,其设计初衷是通过动态生成的映像将文件系统从每个
- 机器学习与深度学习间关系与区别
ℒℴѵℯ心·动ꦿ໊ོ꫞
人工智能学习深度学习python
一、机器学习概述定义机器学习(MachineLearning,ML)是一种通过数据驱动的方法,利用统计学和计算算法来训练模型,使计算机能够从数据中学习并自动进行预测或决策。机器学习通过分析大量数据样本,识别其中的模式和规律,从而对新的数据进行判断。其核心在于通过训练过程,让模型不断优化和提升其预测准确性。主要类型1.监督学习(SupervisedLearning)监督学习是指在训练数据集中包含输入
- JavaScript 中,深拷贝(Deep Copy)和浅拷贝(Shallow Copy)
跳房子的前端
前端面试javascript开发语言ecmascript
在JavaScript中,深拷贝(DeepCopy)和浅拷贝(ShallowCopy)是用于复制对象或数组的两种不同方法。了解它们的区别和应用场景对于避免潜在的bugs和高效地处理数据非常重要。以下是对深拷贝和浅拷贝的详细解释,包括它们的概念、用途、优缺点以及实现方式。1.浅拷贝(ShallowCopy)概念定义:浅拷贝是指创建一个新的对象或数组,其中包含了原对象或数组的基本数据类型的值和对引用数
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟