- 什么是深度学习框架中的计算图?
杰瑞学AI
ComputerknowledgeNLP/LLMsAI/AGI深度学习人工智能pytorch
在深度学习框架中,计算图是核心的数据结构和抽象概念,它用来表示和定义深度学习模型的计算过程。我们可以把它想象成一个描述数学运算如何组合和执行的有向图。以下是计算图的关键要素和作用:节点:代表操作或变量。操作:数学运算,如加法(+)、乘法(*)、矩阵乘法(matmul)、激活函数(ReLU,sigmoid)、卷积(conv2d)、损失函数(cross_entropy)等。变量:通常是张量,即存储数据
- 【华为od刷题(C++)】HJ35 蛇形矩阵(指针)
m0_64866459
华为odc++链表
我的代码1:#includeusingnamespacestd;intmain(){introw;//row:定义了矩阵的行数(和列数,实际上是一个正方形矩阵)while(cin>>row){//这个循环会持续执行,直到输入流被结束//每次读取一个整数并赋值给row,程序就开始执行填充操作int**a=newint*[row];//动态地为一个二维数组(a)的行分配内存/*这里a是一个指向指针的指
- 两步移动搜索法(2SFCA)python
我在北京coding
pythonpython开发语言
实现两步移动搜索法(Two-StepFloatingCatchmentAreaMethod,2SFCA)是一种广泛应用于地理信息系统(GIS)领域的方法,用于评估设施的空间可达性。以下是基于Python和GeoPandas的一种实现方式。准备工作为了实现2SFCA方法,需要准备以下数据集:供给点:表示服务提供方的位置及其服务能力。需求点:表示潜在使用者的位置及其需求量。距离矩阵:描述供给点与需求点
- 反向传播神经网络极简入门
自信哥
单个神经元神经网络是多个“神经元”(感知机)的带权级联,神经网络算法可以提供非线性的复杂模型,它有两个参数:权值矩阵{Wl}和偏置向量{bl},不同于感知机的单一向量形式,{Wl}是复数个矩阵,{bl}是复数个向量,其中的元素分别属于单个层,而每个层的组成单元,就是神经元。神经元神经网络是由多个“神经元”(感知机)组成的,每个神经元图示如下:这其实就是一个单层感知机,其输入是由和+1组成的向量,其
- ShaderGraph节点解析(124):绕轴旋转节点(Rotate About Axis Node)详解
小李也疯狂
#unityShaderGraphUnity
目录一、节点功能概述二、端口详解控制选项三、技术原理解析3.1数学基础:罗德里格斯旋转公式3.2旋转矩阵构造3.3生成代码解析1.弧度模式(Radians)2.度模式(Degrees)3.4旋转方向:右手定则四、应用场景与实战案例4.1角色骨骼旋转(动画驱动)场景:实现角色手臂绕肱骨(上臂骨)旋转,模拟弯曲动作4.2相机环绕效果(第三人称视角)场景:让相机绕目标物体(如角色)的Y轴旋转,实现环绕观
- 【机器学习笔记Ⅰ】7 向量化
巴伦是只猫
机器学习机器学习笔记人工智能
向量化(Vectorization)详解向量化是将数据或操作转换为向量(或矩阵)形式,并利用并行计算高效处理的技术。它是机器学习和数值计算中的核心优化手段,能显著提升代码运行效率(尤其在Python中避免显式循环)。1.为什么需要向量化?(1)传统循环的缺陷低效:Python的for循环逐元素操作,速度慢。代码冗长:需手动处理每个元素。示例:计算两个数组的点积(非向量化)a=[1,2,3]b=[4
- Android PNG/JPG图ARGB_8888/RGB_565解码形成Bitmap在物理内存占用大小的简单计算
AndroidPNG/JPG图ARGB_8888/RGB_565解码形成Bitmap在物理内存占用大小的简单计算Android的Bitmap是一个用于表示图像数据的核心类,代表一张图片在内存中的存储,Bitmap存储了图像的像素信息数据。Bitmap把图像理解为像素点组成的二维矩阵,每个像素点存储对应位置的一系列ARGB值(透明度+红绿蓝通道)。Bitmap在内存中占用大小的关键计算公式:内存
- python实现多元线性回归算法 (附完整源码)
源代码大师
python算法完整教程算法python线性回归
python实现多元线性回归算法1.使用正规方程实现多元线性回归代码说明运行结果示例2.使用梯度下降法实现多元线性回归代码说明运行结果示例进一步优化与注意事项下面是使用Python从头实现多元线性回归算法的完整源码。这个实现利用了numpy进行矩阵运算,并展示了如何训练模型、进行预测以及评估模型性能。为了更全面,代码中还包含了一个使用梯度下降法(GradientDescent)优化参数的实现。多元
- 计算三维空间中AOA定位的 CRLB(Cramér–Rao 下界,克拉美罗下界)公式与MATLAB例程
MATLAB卡尔曼
MATLAB定位程序与详解matlab机器学习定位导航
文章目录适用条件✅符号定义✅CRLB计算基本框架1.方向向量定义2.雅可比矩阵(Jacobian)3.Fisher信息矩阵(FIM)4.Cramér–RaoLowerBound✅例程中文注释版`aoa_crlb_3d_demo.m`✅运行输出结果在三维空间中,利用AOA(AngleofArrival,到达角度)测量信息进行目标定位时,CRLB(Cramér–RaoLowerBound)表示该测量系
- 创客匠人深度剖析:家庭教育赛道创始人 IP 打造与知识变现的破局之道
创小匠
tcp/ip网络协议网络
在知识付费领域,家庭教育赛道的竞争日益激烈,如何从0-1打造创始人IP并实现高效拓客,成为创业者的核心难题。创客匠人服务的慈航德教育创始人陈向杰老师,通过视频号运营、产品矩阵设计与社群生态构建,实现单月拓客1.6万+,其背后的IP打造逻辑为行业提供了可复用的方法论。从慈航德教育的案例来看,创始人IP的定位需要锚定赛道本质需求。陈向杰老师将“慈、航、德”的品牌理念融入IP人设,以“帮助孩子减负”的教
- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- 向量运算、矩阵运算、线性变换相关运算
超龄超能程序猿
机器学习矩阵线性代数机器学习
一、向量核心运算1.向量加法与数乘(线性组合基础)定义:加法:若a=(a1,a2,…,an),b=(b1,b2,…,bn),则a+b=(a1+b1,a2+b2,…,an+bn)。数乘:若k为标量,则ka=(ka1,ka2,…,kan)。性质:满足交换律、结合律,构成向量空间的基本运算。应用:向量线性组合(如基向量表示任意向量)、物理中力的合成与分解。2.点积(内积,DotProduct)定义:a⋅
- 深度学习实验:GPU加速,突破性能瓶颈
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
深度学习实验:GPU加速,突破性能瓶颈1.背景介绍随着深度学习模型变得越来越复杂和庞大,传统的CPU已经无法满足训练和推理的计算需求。GPU凭借其强大的并行计算能力和专门为矩阵运算优化的架构,成为了深度学习领域的核心加速器。本文将探讨如何利用GPU加速深度学习实验,突破性能瓶颈,提高模型训练和推理的效率。2.核心概念与联系2.1GPU架构GPU(图形处理器)最初是为了加速图形渲染而设计的,但由于其
- NV133NV137美光固态闪存NV147NV148
18922804861
数据库
NV133NV137美光固态闪存NV147NV148美光固态闪存技术矩阵深度解析:NV133至NV148的全面较量一、性能参数:数据高速公路的“车速”比拼读写速度:从“乡间小道”到“高铁动脉”美光NV系列固态闪存的核心竞争力在于其读写速度的跃升。以NV158为例,其顺序读取速度可达数千MB/s,加载大型文件(如4K视频、3D建模文件)时,体验如同“在数据高速路上一路绿灯飞驰”。相比之下,传统机械硬
- Open3D 点到面的ICP配准算法
AtlasCloud
python点云数据处理算法人工智能python矩阵numpy
目录一、算法原理1、算法概述2、点到平面ICP精配准3、参考文献二、主要函数三、代码实现四、结果展示1、初始位置2、配准结果一、算法原理1、算法概述 点到平面度量通常使用标准非线性最小二乘法来求解,例如Levenberg-Marquardt。点到平面ICP算法的每次迭代通常比点到点算法慢,但收敛速度明显更快。两个点云之间的相对旋转小于30°,在旋转矩阵中用θ替换sinθ,用1替换cosθ实现用线
- 线性代数在图像处理中的应用 --- 纳尼? 2D的高斯核可以通过1D的高斯核直接生成?(秩为1的矩阵)
松下J27
LinearAlgebra线性代数图像处理人工智能
二维高斯核,Rank秩等于一的矩阵之前,我在学习图像处理的时候,会经常用到Gaussianblur,也就是二维高斯低通滤波。当时用的都是Matlab中,现成的图像处理库。只需要输入sigma和kernelsize这些参数就行了,完全不需要考虑高斯核中的每个点长啥样。虽然教科书里面也会有一些配图,例如:直到后来,我学习高斯图像金字塔的时候发现,在别人的代码里面,他在生成二维高斯核的时候,并不是直接写
- MySQL CDC与Kafka整合指南:构建实时数据管道的完整方案
亲爱的非洲野猪
mysqlkafka数据库
一、引言:现代数据架构的实时化需求在数字化转型浪潮中,实时数据已成为企业的核心资产。传统批处理ETL(每天T+1)已无法满足以下场景需求:实时风险监控(金融交易)即时个性化推荐(电商)物联网设备状态同步微服务间数据一致性本文将深入探讨如何通过MySQLCDC与Kafka的整合,构建高效可靠的实时数据管道。二、技术选型:三大CDC工具深度对比功能矩阵比较特性DebeziumCanalMaxWell多
- 【Torch】nn.Embedding算法详解
油泼辣子多加
深度学习embedding算法
1.定义nn.Embedding是PyTorch中的查表式嵌入层(lookup‐table),用于将离散的整数索引(如词ID、实体ID、离散特征类别等)映射到一个连续的、可训练的低维向量空间。它通过维护一个形状为(num_embeddings,embedding_dim)的权重矩阵,实现高效的“索引→向量”转换。2.输入与输出输入类型:整型张量(torch.long或torch.int64),必须
- 《剑指迷宫:破解矩阵路径之谜》
一只咸鱼大王
故事版本数据结构与算法C++数据结构算法递归回溯
故事标题:《剑与路之书——矩阵迷宫的路径密钥》引子:迷宫之城的秘密在遥远的算法大陆,有一座神秘的城市——“迷宫之城”。在这座城市的中心,矗立着一座名为“命运之塔”的古老建筑。传说中,这里藏着一本神秘的典籍——《剑指天书》,书中记载着无数关于矩阵、路径和逻辑推理的奥秘。在这片土地上,有一种被称为“矩阵迷宫”的古老魔法阵。它由一个个字符格子组成,每一步只能向上下左右移动一格。而最神奇的是,如果一条路径
- mysql 内积_Python如何计算两行数据内积
Python计算两行数据内积的方法:首先使用【mat()】方法;然后将每组数据分别放到方法里转换为矩阵;再使两矩阵相乘;最后进行转换即可。>>>a=mat([[1],[2],[3]]);>>>b=mat([[0],[2],[3]]);>>>amatrix([[1],[2],[3]])>>>bmatrix([[0],[2],[3]])>>>a.T*bmatrix([[13]])上面为两个列向量的内积
- 用Python解锁图像处理之力:从基础到智能应用的深度探索
熊猫钓鱼>_>
python图像处理开发语言
在像素构成的数字世界里,Python已成为解码图像奥秘的核心引擎。一、为何选择Python处理图像?超越工具的本质思考当人们谈论图像处理时,往往会陷入工具对比的漩涡(PythonvsMATLABvsC++)。但Python的真正价值在于其构建的完整生态闭环:科学计算基石:NumPy的ndarray结构完美对应图像的多维矩阵本质算法实现自由:从传统算子到深度学习模型的无缝衔接可视化即战力:Matpl
- NumPy-核心函数np.matmul()深入解析
GG不是gg
numpynumpy
NumPy-核心函数np.matmul深入解析一、矩阵乘法的本质与`np.matmul()`的设计目标1.数学定义:从二维到多维的扩展2.设计目标二、`np.matmul()`核心语法与参数解析函数签名核心特性三、多维场景下的核心运算逻辑1.二维矩阵乘法:基础用法2.一维向量与二维矩阵相乘3.高维数组:批次矩阵乘法4.广播机制下的形状匹配四、与`np.dot()`和`*`运算符的核心区别1.对比`
- Pytorch:nn.Linear中是否自动应用softmax函数
浩瀚之水_csdn
深度学习目标检测#Pytorch框架pytorch人工智能python
在本文中,我们将介绍Pytorch中的nn.Linear模块以及它是否自动应用softmax函数。nn.Linear是Pytorch中用于定义线性转换的模块,常用于神经网络的全连接层。一、什么是nn.Linearnn.Linear是PyTorch中的一个类,它是实现线性变换的模块。nn.Linear的主要作用是将输入张量和权重矩阵相乘,再添加偏置,生成输出张量。我们来看一个简单的示例,展示如何使用
- 华为OD 机试 2025 B卷 - 相同数字组成图形的周长 (C++ & Python & JAVA & JS & GO)
无限码力
华为od华为OD2025B卷华为OD机试2025B卷华为OD机试华为OD机考2025B卷
相同数字组成图形的周长华为OD机试真题目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解华为OD机试2025B卷200分题型题目描述有一个64×64的矩阵,每个元素的默认值为0,现在向里面填充数字,相同的数字组成一个实心图形,如下图所示是矩阵的局部(空白表示填充0):数字1组成了蓝色边框的实心图形,数字2组成了红色边框的实心图形。单元格的边长规定为1个单位。请根据输入,计算
- 牛客周赛 Round 59(思维、构造、数论)
mldl_
数据结构与算法算法数论逆序数构造对角线处理范德蒙恒等式
文章目录牛客周赛Round59(思维、构造、数论)A.TDB.你好,这里是牛客竞赛C.逆序数(思维)D.构造mex(构造)E.小红的X型矩阵F.小红的数组回文值(数论、范德蒙恒等式)牛客周赛Round59(思维、构造、数论)E题,对于对角线的处理,常用。F题,范德蒙恒等式推论的应用。A.TD简单数学题。#includeusingnamespacestd;intmain(){doublen,m;ci
- 探索AI时代:全国启动人工智能与未来公益讲座
私域合规研究
人工智能百度
人工智能与未来——AI赋能中小企业数字化升级公益讲座一、讲座背景随着科技的飞速发展,人工智能(AI)已经深入到了各行各业,为了推动AI技术在中小企业的广泛应用,助力企业拥抱新技术,迎接新机遇,拟申请联合组织AI赋能中小企业数字化升级公益讲座。讲座内容涵盖包括AI新媒体矩阵营销、AI智能跨境获客平台、AI+直播电商认证,AI+数字展厅、中检AI报关风险诊断及合规AI制单系统、AI+商品追溯、AI个人
- 代码随想录算法训练营第二十一天|回溯算法理论基础,77. 组合
丁希希哇
力扣算法刷题算法面试python力扣数据结构剪枝
系列文章目录代码随想录算法训练营第一天|数组理论基础,704.二分查找,27.移除元素代码随想录算法训练营第二天|977.有序数组的平方,209.长度最小的子数组,59.螺旋矩阵II代码随想录算法训练营第三天|链表理论基础,203.移除链表元素,707.设计链表,206.反转链表代码随想录算法训练营第四天|24.两两交换链表中的节点,19.删除链表的倒数第N个节点,面试题02.07.链表相交,14
- 数据处理与统计分析——03-Numpy的np.dot()方法&点积与矩阵乘法
零光速
数据分析numpy矩阵python开发语言数据结构
np.dot()np.dot()在NumPy中既可以用于向量的点积,也可以用于矩阵乘法,这两种运算的本质不同,取决于输入是向量还是矩阵。1.点积(DotProduct)定义当np.dot()的输入是两个一维向量时,计算的是点积,即两个向量的对应元素相乘并求和,结果是一个标量。公式对于两个n维向量a=[a1,a2,…,an]和b=[b1,b2,…,bn]点积的计算公式为:a⋅b=a1*b1+a2*b
- 力扣 hot100 Day24
240.搜索二维矩阵II编写一个高效的算法来搜索mxn矩阵matrix中的一个目标值target。该矩阵具有以下特性:每行的元素从左到右升序排列。每列的元素从上到下升序排列。//看提示写的classSolution{public:boolsearchMatrix(vector>&matrix,inttarget){intm=matrix.size(),n=matrix[0].size();intr
- 基于eNSP的mstp基础实验和综合实验-20250704练习版
韩公子的Linux大集市
服务器前端javascript
文章目录华为eNSPMSTP实验全集(S5700版)-终极整合指南实验拓扑图全集(含数据流可视化)实验1:单交换机MSTP基础配置实验2:跨交换机MSTP负载分担实验3:MSTP与静态路由集成实验4:企业MSTP网络架构(综合实验)详细配置手册(S5700为核心)通用配置原则实验1:单交换机MSTP配置实验2:跨交换机负载分担实验3:MSTP与路由集成实验4:企业级MSTP网络全实验验证矩阵初学者
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p