- OSGB编辑复杂又困难?试试这款免费GIS工具箱,高效实现场景编辑
GISBox
GISBoxvue.jswebglnode.jsedge数据分析科技经验分享
在当今的地理信息科学(GIS)领域,数据的精确处理与直观展示无疑扮演着核心角色。无论是城市规划的精细布局、环境保护的科学决策,还是灾害预警的迅速响应,都离不开准确、实时的地理信息基石。然而,面对庞大的GIS数据,许多软件在处理、编辑和转换上都显得力不从心,尤其是对于倾斜摄影模型、地形和影像的编辑,更是成为了许多用户的棘手难题。1.GISBox简介GISBox作为一款免费的GIS工具箱,支持OSGB
- 【ol-cesium】OpenLayers与Cesium的二三维联动
不爱赖床的懒虫
笔记前端vuecesiumopenlayers二三维联动
OpenLayers与Cesium的二三维联动本文主要介绍OpenLayers与Cesium二三维联动的实现过程,以及在实现的过程中所遇到的问题以及解决方法。研究二三维联动的动机是需要开发基于GeoServer地图服务器的地理场景可视化系统,其中涉及到对服务器中地理数据的展示与交互部分,同时在三维场景中展示数字高程与地表影像信息。地理场景可视化系统我后续也会站看介绍,感兴趣的读者可以关注我后续的博
- 嵌入式硬件篇---WIFI模块
Ronin-Lotus
程序代码篇嵌入式硬件篇嵌入式硬件cWIFI
文章目录前言一、核心工作原理1.物理层(PHY)工作频段2.4GHz5GHz调制技术直接序列扩频正交频分复用高效数据编码2.协议栈架构MAC层Beacon帧4次握手3.核心工作模式二、典型应用场景1.智能家居系统远程控制环境监测视频监测2.工业物联网设备远程运维生产线监控仓储管理3.医疗设备远程诊疗医疗影像药品管理4.消费电子智能音箱游戏设备打印设备三、ESP32开发示例1.环境配置(Platfo
- 图像识别技术与应用课后总结(20)
一元钱面包
人工智能
图像分割概念图像分割是把图像中不同像素划分到不同类别,预测目标轮廓,属于细粒度分类。比如将图像里不同物体、背景等区分开来,就像把一幅画里的各个元素精准归类。应用场景人像抠图:能精准分离人物和背景,用于图片编辑、影视制作等,比如去除照片背景换背景。医学组织提取:在医学影像(如CT、MRI图像)中分离出不同组织,辅助疾病诊断、手术规划等。遥感图像分析:分析卫星或航空遥感图像时,区分土地、植被、建筑等不
- 暗光增强技术研究进展与产品落地综合分析(2023-2025)
AndrewHZ
深度学习新浪潮图像处理算法动态范围计算机视觉深度学习transformer暗光增强
一、引言暗光增强技术作为计算机视觉与移动影像领域的核心研究方向之一,近年来在算法创新、硬件适配及产品落地方面取得了显著进展。本文从技术研究与产业应用两个维度,系统梳理近三年(2023-2025)该领域的关键突破,并对比分析主流手机厂商的影像技术优劣势。二、暗光增强技术研究进展1.算法创新:从传统模型到深度学习(1)Retinex理论的深度结合清华与ETH联合提出的Retinexformer(202
- 算力技术演进与多场景融合路径
智能计算研究中心
其他
内容概要算力技术的演进正经历从异构计算到量子计算的范式跃迁。当前技术图谱中,芯片制程突破与架构创新持续推动算力密度提升,如5nm以下先进工艺与存算一体设计显著增强运算单元效率。与此同时,模型压缩、数据预处理等算法优化手段使单位算力产出提高30%以上。典型应用场景中,工业互联网通过自适应计算实现毫秒级实时控制,医疗影像领域借助分布式计算完成TB级数据处理,而智能安防系统依托边缘计算降低端到端时延至5
- 联邦学习算法安全优化与可解释性研究
智能计算研究中心
其他
内容概要本研究围绕联邦学习算法的安全性优化与模型可解释性增强展开系统性探索。首先,针对联邦学习中数据隐私泄露与模型性能损耗的固有矛盾,提出一种融合差分隐私与动态权重聚合的协同优化框架,通过分层加密机制降低敏感信息暴露风险。其次,引入可解释性算法(如LIME与SHAP)构建透明化决策路径,结合注意力机制实现特征贡献度的可视化映射,有效提升模型在医疗影像异常检测与金融欺诈识别场景中的可信度。此外,研究
- 算力融合创新与多场景应用生态构建
智能计算研究中心
其他
内容概要算力作为数字经济的核心驱动力,正经历从单一计算范式向融合架构的跨越式演进。随着异构计算、光子计算等底层技术的突破,算力资源逐步形成跨架构协同、多模态联动的智能供给体系,支撑工业互联网、医疗影像、智能安防等场景实现效率跃升。与此同时,量子计算与神经形态计算的前沿探索,正在重塑科学计算与实时决策的技术边界。建议行业关注算力可扩展性与安全标准的协同设计,通过动态调度算法与分布式架构优化,构建弹性
- 华为仓颉编程语言与医疗领域的深度融合:技术与实践
想成为高手499
华为人工智能服务器
引言在数字化浪潮席卷全球的背景下,医疗行业的智能化转型已成为一种不可逆的趋势。从电子病历(EMR)、医疗影像分析,到远程手术和个性化健康管理,技术创新正在不断推动医疗领域的变革。然而,这一过程对底层技术提出了更高的要求:高效的计算性能、强大的硬件适配性、分布式计算能力以及生态系统的支持。华为推出的自研编程语言仓颉(Cangjie)正是在此背景下应运而生。仓颉语言以其高效、灵活和强大的硬件整合能力,
- 智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算【超级详细版】
AI筑梦师
计算机视觉算法深度学习人工智能机器学习计算机视觉python
智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算1.引言1.1研究背景在计算机视觉、模式识别、医学影像分析和自动驾驶等领域,形状匹配是核心任务之一。然而,现实世界的形状往往存在可变性(Variability),主要体现在以下几个方面:形变(Deformation):物体可能由于柔性材料、外力作用或生物运动发生非刚性形变。尺度变化(ScaleVariation):目标形状在不同场景下可能大
- 深度学习在医学影像分析中的应用:DeepSeek系统的实践与探索
Evaporator Core
#深度学习#DeepSeek快速入门DeepSeek进阶开发与应用深度学习人工智能
随着人工智能技术的迅猛发展,深度学习在医学领域的应用逐渐成为研究热点。医学影像分析作为医疗诊断的重要组成部分,正受益于深度学习技术的突破。DeepSeek系统是一种基于深度学习的医学影像分析平台,旨在通过高效、精准的算法辅助医生进行疾病诊断和治疗决策。本文将深入探讨DeepSeek系统的技术原理、实现方法及其在医学影像分析中的实际应用,并结合代码示例展示其核心功能。1.DeepSeek系统的技术架
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 医疗影像联邦学习可解释性算法研究
智能计算研究中心
其他
内容概要医疗影像分析领域的联邦学习技术正面临数据隐私保护与模型可解释性的双重挑战。本研究以跨机构医疗影像协作场景为核心,系统性探讨联邦学习框架下可解释性算法的创新路径,重点解决医疗AI模型在分布式训练中的透明度缺失问题。通过引入动态特征选择机制与可解释性注意力模块,算法在保持数据本地化处理的同时,实现了关键病灶特征的跨域关联与可视化解析。研究同步整合自动化数据增强流程与多维度评估指标(如F1值、召
- RAG 在多模态数据处理中的应用探索:结合图像与文本生成
hy098543
AIGC
目录引言多模态数据处理的挑战与需求数据异质性与融合难题多样化应用场景的需求RAG在图像与文本生成中的应用架构图像检索与文本生成协同跨模态特征融合与生成关键技术与实现细节图像特征提取与表示文本检索与语义理解跨模态生成模型训练应用案例分析智能设计辅助医疗影像报告生成结论引言随着信息技术的飞速发展,数据呈现出多模态的特性,即包含文本、图像、音频、视频等多种形式。在自然语言处理(NLP)和计算机视觉(CV
- dcm4che
jamie_zhengmin
dcm4chearchivejboss工具服务器
dcm4che工具包DICOMtoolkitDICOM工具包dcm4chee归档服务器器IHE影像管理器和影像归档执行器(dcm4jbossarchive影像归档器,影像扫描检查和报告的管理)dcm4che2重架构dcm4che的重架构实现
- 基于生成对抗网络(GAN)的图像超分辨率实战:从SRGAN到ESRGAN
Evaporator Core
#深度学习强化学习生成模型生成对抗网络人工智能神经网络
图像超分辨率(ImageSuper-Resolution)是一种通过算法将低分辨率图像转换为高分辨率图像的技术,广泛应用于医学影像、卫星图像和视频增强等领域。生成对抗网络(GAN)是图像超分辨率的经典方法,而增强型超分辨率生成对抗网络(ESRGAN)则通过引入残差网络和感知损失进一步提升了图像质量。本文将通过一个完整的实战案例,展示如何使用SRGAN和ESRGAN进行图像超分辨率,并提供详细的代码
- ArcGIS无插件加载(无偏移)在线天地图高清影像与街道地图指南
橘飞侠
arcgis
在地理信息系统(GIS)的应用中,加载高清影像与街道地图对于地图制图、影像查阅、空间数据分析等工作至关重要。天地图作为官方出品的地图服务,以其标准的数据、较快的影像更新速度等特点受到广泛欢迎。以下是如何在ArcGIS中无插件加载(无偏移)天地图高清影像与街道地图的具体步骤。第一步:申请天地图Key访问天地图官方网站的地图服务API页面:http://lbs.tianditu.gov.cn/serv
- 详解 FO-DICOM:医疗影像处理的强大工具
猿享天开
DICOM医学影像专业知识精讲人工智能
在现代医疗领域,DICOM(数字成像和通信医学)标准是用于存储和传输医学影像的广泛采用的协议。FellowOakDICOM(简称FO-DICOM)是一个功能齐全的.NET库,专门用于处理DICOM文件和协议。本文将详细介绍FO-DICOM的功能、优点以及在开发医疗影像应用中的应用。主要功能1.DICOM文件操作FO-DICOM提供了全面的方法来处理DICOM文件。开发者可以通过同步或异步的方式读取
- 天地图WMTS GetTile(地图API)请求参数深度解析
喆星时瑜
#天地图arcgis
以下针对天地图API影像底图瓦片请求URL进行逐项参数拆解,结合OGCWMTS1.0.0标准与天地图技术规范进行专业解读:http://t0.tianditu.gov.cn/img_w/wmts?SERVICE=WMTS&REQUEST=GetTile&VERSION=1.0.0&LAYER=img&STYLE=default&TILEMATRIXSET=w&FORMAT=tiles&TILEMA
- Python计算DEM(tif格式)坡度和坡向
见贤思齐547
Python地理数据处理python
本文根据山东省DEM图获取坡度、坡向图,使用了三种方式:PythonGDAL工具自带的函数处理、Python中自己编写函数实现和arcgis中实现。一.Python中实现(针对TIF格式的DEM数据)1.利用gdal工具处理(1)代码fromosgeoimportgdal,osr#获取影像信息infoDEM=gdal.Info(r"D:\ProfessionalProfile\DEMdata\2_
- 34个适合机械工程及自动化专业【论文选题】
大数据蟒行探索者
自动化运维
论文选题具有极其重要的意义,它直接关系到论文的质量、价值以及研究的可行性和顺利程度。选题明确了研究的具体领域和核心问题,就像给研究旅程设定了方向和目的地。例如,选择“人工智能在医疗影像诊断中的应用”这一选题,就确定了研究将聚焦于人工智能技术在医疗影像领域的应用问题,研究目标可能是提高影像诊断的准确性、效率等。清晰的方向和目标能让研究者在收集资料、设计研究方法等方面更具针对性,避免研究过程中的盲目性
- Java开发第一坑:记一次MySQL ON DUPLICATE KEY UPDATE影响行数异常排查:从现象到解决的全过程
猿享天开
javamysql开发语言
记一次MySQLONDUPLICATEKEYUPDATE影响行数异常排查:从现象到解决的全过程一、问题现象:神秘的计数器异常由于学习JAVA开发时间不长,也没有进行系统性学习,由于项目需要就草草的开始了程序开发,在开发医疗影像归档系统时,归档患者影像时需要自动根据数据库操作后的返回值判断是新增插入数据,还是更新数据,但由于返回的影响行数不准确,比如插入1条新数据、更新一条数据或未变化,返回的影响行
- element audio 标签 不显示_BenQ 明基专业摄影显示器SW270C开箱评测体验
weixin_39685130
elementaudio标签不显示
前言继BenQSW271显示器(评测链接)之后,BenQ又推出了专业影像工作者的高效利器—SW270C(官网链接),搭配27英寸2K分辨率IPS屏,覆盖99%AdobeRGB、100%sRGB\Rec.709及97%P3广色域,并采用全新的色彩引擎实现亮度色温均匀性,使屏幕各个部分呈现均匀一致的色彩。新推出的16-bit3DLUT结合硬件校准让屏幕色彩更加准确,能够还原真实的色彩。另外,BenQS
- 【图像处理】ISP(Image Signal Processor) 图像处理器的用途和工作原理?
AndrewHZ
图像处理基石图像处理智能手机影像系统算法深度学习人工智能ISP
ISP(图像信号处理器)是数字影像设备的“视觉大脑”,负责将传感器捕获的原始电信号转化为我们看到的高清图像。以下从用途和工作原理两方面通俗解析:一、ISP的核心用途:让照片“更像眼睛看到的”提升画质:降噪:去除暗光下的噪点(如手机夜景模式,通过多帧合成+算法抑制噪点)。色彩还原:校正传感器偏色(例如索尼传感器常偏黄,ISP通过白平衡算法还原真实色彩)。动态范围优化:保留高光和暗部细节(类似HDR,
- 哨兵2号遥感影像解析全流程:步骤、算法与AI应用详解
zhz5214
AIGIS人工智能遥感aisentinel智能体
遥感影像解析是农业监测、环境评估等领域的重要技术手段。哨兵2号(Sentinel-2)凭借其高分辨率多光谱数据,成为遥感分析的热门数据源。本文将系统梳理哨兵2号影像解析的核心步骤、适用算法与软件工具,并探讨AI技术在该领域的创新应用。一、哨兵2号影像解析核心步骤1.数据获取与预处理数据下载哨兵2号数据可通过官方平台[CopernicusOpenAccessHub](https://scihub.c
- Google Earth Engine——导入无云 Sentinel-2 图像和NDVI计算
此星光明
GEE教程训练sentinel人工智能geendvi归一化植被指数波段运算遥感
目录搜索和导入无云Sentinel-2图像Sentinel-2的背景打开GEE界面定义您感兴趣的领域查询Sentinel-2图像的存档过滤图像集合将图像添加到地图视图定义真彩色可视化参数探索影像定义假色可视化参数从波段组合中导出指数NDVI锻炼本实验的目的是介绍GoogleEarthEngine处理环境。在本练习结束时,您将能够搜索、查找和可视化范围广泛的遥感数据集。在第一个练习中,我们将重点关注
- 深度学习在医疗影像诊断中的应用与实现
Evaporator Core
#DeepSeek快速入门人工智能#深度学习深度学习人工智能
引言随着人工智能技术的快速发展,深度学习在医疗领域的应用日益广泛,尤其是在医疗影像诊断方面。医疗影像数据量大、复杂度高,传统的诊断方法往往依赖于医生的经验,容易受到主观因素的影响。而深度学习通过自动学习特征,能够从海量数据中提取出有用的信息,辅助医生进行更精准的诊断。本文将探讨深度学习在医疗影像诊断中的应用,并通过代码示例展示如何实现一个简单的医疗影像分类模型。深度学习在医疗影像诊断中的应用1.图
- 生成对抗网络优化医疗影像分析方法
智能计算研究中心
其他
内容概要生成对抗网络(GAN)在医疗影像分析中的应用正经历从理论验证到临床落地的关键转型。本研究通过整合联邦学习算法与动态数据增强技术,构建了跨机构医疗影像协同分析框架,在保证患者隐私的前提下实现了数据资源的有效扩展。值得注意的是,算法优化过程中采用的三阶段特征工程策略——包括基于注意力机制的特征选择、多尺度特征融合以及可解释性特征映射——使模型决策透明度提升约37.6%。临床实践表明,将联邦学习
- 医学人工智能影像诊断数据收集与整理
V搜xhliang0246
人工智能健康医疗算法
在医学领域中,人工智能(AI)尤其是深度学习技术,已经被广泛应用于医学影像的分析和诊断。为了训练这些模型,需要大量的高质量标注数据。下面我会给出一个简单的示例流程,介绍如何收集、整理和准备医学影像数据集,并提供一些基础的Python代码示例。数据收集首先,你需要收集包含医学影像的数据集。这些数据通常来自医院或研究机构,并且需要经过伦理审查和患者同意。示例数据集假设我们有一个包含肺部X光片的数据集,
- InSAR个人笔记(三)ISCE之DInSAR处理--topsApp.py
玊363
笔记
数据下载1、哨兵1slc数据下载研究区的选定:首先确定研究区内的范围(经纬度),其次确定下载数据的时间,最后保证两张SAR影像是重复轨道拍摄的(哨兵单颗卫星时间周期为12天,星座为24天)(1)下载网址:SAF:https://search.asf.alaska.edu/#/?zoom=5.000¢er=123.354,25.990https://search.asf.alaska.edu/#/?
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。