【NLP】新闻文本分类

【NLP】新闻文本分类

  • 赛题理解和思路分析
    • 数据读取
    • 思路一:特征提取 + 分类器
      • TF-IDF算法介绍
      • TF-IDF实践步骤

赛题理解和思路分析

ccccc

数据读取

赛题以匿名处理后的新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐的文本数据。

赛题数据由以下几个部分构成:训练集20w条样本,测试集A包括5w条样本,测试集B包括5w条样本。为了预防选手人工标注测试集的情况,我们将比赛数据的文本按照字符级别进行了匿名处理。
在数据集中标签的对应的关系如下:{‘科技’: 0, ‘股票’: 1, ‘体育’: 2, ‘娱乐’: 3, ‘时政’: 4, ‘社会’: 5, ‘教育’: 6, ‘财经’: 7, ‘家居’: 8, ‘游戏’: 9, ‘房产’: 10, ‘时尚’: 11, ‘彩票’: 12, ‘星座’: 13}

导入数据后进行初步观察,数据中暂无缺失项,且由两部分组成:文章标签,和文本具体标签。
【NLP】新闻文本分类_第1张图片

在这里,采用两种思路对赛题数据进行文本分类:

思路一:直接使用TF-IDF对文本提取特征,并使用分类器进行分类。在分类器的选择上,可以使用SVM、LR、或者XGBoost。

思路二:Bert文本分类,其具有强大的建模学习能力(进阶)

思路一:特征提取 + 分类器

TF-IDF算法介绍

词频-逆向文件频率(TF-IDF)是一种在文本挖掘中广泛使用的特征向量化方法,它可以体现一个文档中词语在语料库中的重要程度。

TF-IDF的主要思想是:如果某个单词在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。词语由t表示,文档由d表示,语料库由D表示。词频TF(t,d)是词语t在文档d中出现的次数。文件频率DF(t,D)是包含词语的文档的个数。如果我们只使用词频来衡量重要性,很容易过度强调在文档中经常出现而并没有包含太多与文档有关的信息的词语,比如“a”,“the”以及“of”。如果一个词语经常出现在语料库中,它意味着它并没有携带特定的文档的特殊信息。逆向文档频率数值化衡量词语提供多少信息。

(1)TF是词频(Term Frequency)
词频(TF) 表示词条(关键字)在文本中出现的频率。这个数字通常会被归一化(一般是词频除以文章总词数), 以防止它偏向长的文件。

即有:
在这里插入图片描述在这里插入图片描述
(2) IDF是逆向文件频率(Inverse Document Frequency)
逆向文件频率 (IDF) :某一特定词语的IDF,可以由总文件数目除以包含该词语的文件的数目,再将得到的商取对数得到。

如果包含词条t的文档越少, IDF越大,则说明词条具有很好的类别区分能力。公式计算方式为:
在这里插入图片描述
其中,|D| 是语料库中的文件总数。 |{j:ti∈dj}| 表示包含词语 ti 的文件数目(即 ni,j≠0 的文件数目)。如果该词语不在语料库中,就会导致分母为零,因此一般情况下使用 1+|{j:ti∈dj}|

(3)TF-IDF实际上是:TF * IDF
某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语,则可以表达为:
在这里插入图片描述

TF-IDF实践步骤

TF-IDF实践步骤,也即是一般的文本处理和模型训练步骤:

1.获取原始文本内容信息。

2.转换成纯小写,按空格把文章分成独立的词组成的list。

3.去除噪音符号: [""","=","\","/",":","-","(",")",",",".","\n"]等

4.去除停用词

5.提取词干,把相近的词转换为标准形式,比如把文章中的go,going,went,goes统一成go

6.wordcount,统计每个词出现的次数,去掉出现次数较少的词,比如在一百篇文档中,只出现了1~2次的词,显然是没有意义的。

7.训练idf模型

8.对输入的每篇测试文章计算其tfidf向量,然后可以利用tfidf向量求文章之间的相似度(比如用欧拉距离,余弦相似度,Jaccard系数等方法)。

你可能感兴趣的:(【NLP】新闻文本分类)