- FPC在智能眼镜中的应用探索【新立电子】
珠海新立电子科技有限公司
智能眼镜fpc柔性线路板fpc软板
在智能穿戴设备领域,智能眼镜具有独特的便携性、交互性和功能性等特点,智能眼镜的设计追求轻薄、美观与高度集成化。传统刚性电路板因体积庞大、难以弯曲,无法满足智能眼镜的复杂结构需求,而FPC其轻薄、柔软、可弯曲的特性,成为智能眼镜电路板的理想选择。在智能眼镜中,FPC的应用无处不在。它不仅是连接显示屏、摄像头、传感器、电池等关键组件,同时还承担着信号传输、电源管理等。例如,在摄像头模块中,FPC将摄像
- 【Multipath网络层协议】MPTCP工作原理
码上为赢
Multipath精通之路multipathMPTCP
常见网络层多路径协议介绍MPTCP(MultipathTCP)MPTCP是在传统TCP基础上进行扩展的协议,它允许在源端和目的端之间建立多个TCP子流,这些子流可以通过不同的网络路径传输数据。例如,一台笔记本电脑同时连接了Wi-Fi网络和以太网网络,当使用MPTCP进行数据传输时,它可以将数据分别通过Wi-Fi和以太网这两条不同的路径发送到目标服务器,从而充分利用两条链路的带宽。LISP(Loca
- 如何使用Python编程实现捕获笔记本电脑麦克风的音频并通过蓝牙耳机实时传输
winfredzhang
python音视频实时传输蓝牙耳机
在现代的工作和生活环境中,音频传输的需求日益增加。无论是远程会议、在线教育,还是家庭娱乐,音频的实时传输都扮演着至关重要的角色。今天,我将向大家介绍一个简单而实用的应用程序,它能够捕获笔记本电脑麦克风的音频,并通过蓝牙耳机实时传输。这款应用程序特别适用于需要在会议室等场景中远程听取声音的情况。接下来,我将详细讲解这个应用程序的实现过程,并提供完整的代码和使用指南。引言想象一下这样的场景:你需要离开
- 网络安全加密python代码
黑客Ash
web安全安全
点击文末小卡片,免费获取网络安全全套资料,资料在手,涨薪更快网络信息安全中遇到的各种攻击是防不胜防的,采取适当的防护措施就能有效地保护网络信息的安全,包括防火墙、入侵检测系统、漏洞扫描技术以及加密技术等多种防护措施。而信息安全的本质就是要保护信息本身和信息系统在存储、传输中的完整性和保密性,保障不被攻击和篡改,上述的主动攻击、被动攻击和病毒袭击都会造成信息的破坏和泄密,我们以信息安全中的基础理论出
- Farm3D- Learning Articulated 3D Animals by Distilling 2D Diffusion论文笔记
Im Bug
3d论文阅读
Farm3D:LearningArticulated3DAnimalsbyDistilling2DDiffusion1.Introduction最近的研究DreamFusion表明,可以通过text-imagegenerator提取高质量的三维模型,尽管该生成模型并未经过三维训练,但它仍然包含足够的信息以恢复三维形状。在本文中,展示了通过文本-图像生成模型可以获取更多信息,并获得关节模型化的三维对
- SSL 证书是 SSL 协议实现安全通信的必要组成部分
小丁学Java
计算机网络ssl安全网络协议
SSL证书和SSL/TLS协议有着密切的关系,但它们本质上是不同的概念。下面是两者的区别和它们之间的关系的表格:属性SSL/TLS协议SSL证书英文全称SSL(SecureSocketsLayer),TLS(TransportLayerSecurity)SecureSocketsLayerCertificate中文全称SSL(安全套接层协议)和TLS(传输层安全性协议)安全套接层证书定义SSL/T
- HDMI规范-第十六章 HDR(高动态范围)技术规范详解及运用场景
好多渔鱼好多
HDMI人工智能计算机视觉音视频电视视频编解码智能电视
引言随着显示技术的不断发展,用户对图像质量和视觉体验的要求越来越高。传统的SDR(StandardDynamicRange,标准动态范围)技术已经无法满足现代显示设备的需求。为此,HDR(HighDynamicRange,高动态范围)技术应运而生。HDR通过提供更广泛的亮度范围和更丰富的色彩深度,显著提升了图像的质量和视觉效果。本文将全面介绍HDR技术的规范,包括其工作原理、数据传输流程、标准和格
- OpenCV开源机器视觉软件
视觉人机器视觉
杂说opencv开源人工智能
OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库,广泛应用于实时图像处理、视频分析、物体检测、人脸识别等领域。它由英特尔实验室于1999年发起,现已成为计算机视觉领域最流行的工具之一,支持多种编程语言(如C++、Python、Java)和操作系统(Windows、Linux、macOS、Android、iOS)。核心功能图像处理基
- DeepSeek开源周第二弹:DeepEP如何用RDMA+FP8让MoE模型飞起来?
曦紫沐
大模型deepseek
一、引言:MoE模型的通信瓶颈与DeepEP的诞生在混合专家(MoE)模型训练中,专家间的全对全(All-to-All)通信成为性能瓶颈。传统方案在跨节点传输时带宽利用率不足50%,延迟高达300μs以上。DeepSeek推出的DeepEP作为首个开源EP通信库,通过软硬件协同优化,将节点内通信带宽压榨至158GB/s(接近NVLink极限),跨节点RDMA延迟降至46GB/s,成为大模型训练/推
- 大模型RAG优化之高可用向量数据库的“热更”难题与解决方案
kakaZhui
大模型应用案例之RAG打造专属知识库botAIGCchatgpt人工智能llama数据库
在现代应用中,向量数据库被广泛用于图像搜索、推荐系统、语义搜索等场景。但与传统数据库不同,向量数据库的“热更”(即在不中断服务的情况下更新索引)是一个具有挑战性的问题。本文将深入探讨这一问题,对比主流向量数据库的热更方案,并给出Qdrant的代码示例。1.什么是向量数据库的“热更”?想象一下,你正在运营一个大型电商平台,用户可以上传图片搜索相似商品。你的商品库每天都在更新:新商品上架:需要将新商品
- STM32之七:SPI通信
guaizaiguaizai
STM32stm32嵌入式硬件单片机SPI通信移位赋值
目录1.SPI通信简介1.1主从模式1.24根通信线1.3数据传输2.SPI总线时序及其4种工作模式2.1SPI数据移位示意2.2SPI四种工作模式2.2.1mode0:CPOL=0,CPHA=02.2.2mode1:CPOL=0,CPHA=12.2.3mode2:CPOL=1,CPHA=02.2.4mode3:CPOL=1,CPHA=13.SPI模式0代码编写1.SPI通信简介SPI(Seria
- 比较RPC和RESTful API的优缺点
事业运财运爆棚
android
RPC和RESTfulAPI是两种不同的远程调用方式,它们各自具有不同的优缺点。RPC的优点包括:高效:RPC使用自定义的通信协议,可以减少报文传输量,提高传输效率。灵活:RPC支持多种语言,不同的编程语言可以方便地调用远程接口。通用:RPC可以基于XML、JSON等标准化的数据格式进行通信,使得不同语言之间可以正确地传递数据。RPC的缺点包括:实现复杂:RPC需要实现编码、序列化、网络传输等功能
- FPGA中利用fifo时钟域转换---慢时钟域转快时钟域
@晓凡
FPGA学习之路fpga开发
FPGA中利用fifo时钟域转换—慢时钟域转快时钟域一、时间计算方法FIFO的输入数据的时钟是40MHz,FIFO输出数据取60MHz,刚好是40MHz的1.5倍,将慢时钟域转快时钟域。另外,fifo输出的数据,要输出给上位机,一帧数据要传输640*512=327680个像素数据,要求帧频为100Hz,对应的时间是1/100Hz=10ms,即要求10ms内将327680个数据传输完毕。验证fifo
- 常用的HTML标签及属性
微剑
python前端开发htmlcss
前端开发常用的HTML标签和属性较为丰富,以下是一些常用的HTML标签和属性:1.标题标签:h1、h2、h3、h4、h5、h6;属性:id、class、style2.段落标签:p;属性:id、class、style3.图像标签:img;属性:src、alt、title、width、height、border、align4.超链接标签:a;属性:href、target、title、id、class、
- 计算机网络压缩版
编码的凯文
409计算机网络
计算机网络到现在零零散散也算过了三遍,一些协议大概了解,但总是模模糊糊的印象,现在把自己的整体认识总结一下,(本来想去起名叫《看这一篇就够了》,但是发现网上好的文章太多了,还是看这篇吧),作为非通信或对网络有特殊要求的专业,理解到这应该也基本足够了。整体结构目前主流的分类模型是五层体系结构,分别为1,应用层,负责主机内报文对应应用的分发,如邮件SMTP,文件共享服务FTP和浏览器的超文本传输协议H
- 【openCV-89】人脸检测
华东算法王
华东算法王-opencvopencv人工智能计算机视觉
人脸检测简介人脸检测是计算机视觉中的一个重要任务,旨在从图像或视频中识别并定位出人脸的位置。人脸检测不仅是人脸识别、表情分析、面部特征点检测等高级任务的前置步骤,而且在安防监控、智能家居、自动驾驶等多个领域都具有广泛应用。人脸检测的目标人脸检测的目标是从输入的图像或视频流中自动检测出所有人脸的区域,通常用矩形框(boundingbox)表示人脸的位置。人脸检测不仅要识别图像中的人脸,还要在各种条件
- 运输层和应用层之间的接口和端口有什么关系
蓝桉802
计算机网络考研
运输层和应用层之间的接口是通过端口实现的。运输层使用端口号作为应用层与运输层之间的接口,确保不同应用进程之间的数据传输和通信。运输层的主要功能包括复用和分用。复用是指多个应用层的进程可以共享同一个运输层的连接,而分用则是将运输层收到的数据正确地分发到正确的应用层进程。这些功能的实现都依赖于端口号。端口号的作用是为了解决不同操作系统中使用不同格式的进程标识符的问题。由于进程的创建和撤销是动态的,
- netty使用场景
酷爱码
java技术教程java
Netty是一个Java网络编程框架,提供了高性能、高可扩展性的网络通信能力。它通常被用于以下场景:服务器端网络编程:Netty可用于构建各种服务器端应用程序,如Web服务器、游戏服务器、聊天服务器等。客户端网络编程:Netty也可以用于构建客户端应用程序,用于与服务器进行通信。分布式系统:Netty可在分布式系统中作为通信框架,用于节点之间的数据传输和通信。高性能网络应用:由于Netty具有高性
- 扩散模型基本概念
AndrewHZ
深度学习新浪潮扩散模型计算机视觉流形学习生成式模型深度学习次深度学习人工智能
1.核心思想从最原始的DDPM来讲,扩散模型是用变分估计训练的马尔可夫链,相当于VAE+流模型。与标准化流相比,扩散模型的正向过程为预先定义的加噪过程,负责将图像x∼p(x)x\sim{p(x)}x∼
- 案例分析:大对象复用的目标和注意点15
是小旭啊
mybatisniodubbo
对于“大对象”的优化。这里的“大对象”,是一个泛化概念,它可能存放在JVM中,也可能正在网络上传输,也可能存在于数据库中。那么为什么大对象会影响我们的应用性能呢?第一,大对象占用的资源多,垃圾回收器要花一部分精力去对它进行回收;第二,大对象在不同的设备之间交换,会耗费网络流量,以及昂贵的I/O;第三,对大对象的解析和处理操作是耗时的,对象职责不聚焦,就会承担额外的性能开销。结合我们前面提到的缓存,
- Python 分词解析+词云可视化(含停用词文件)
布凯彻-劳斯基
数学建模python学习pycharm中文分词词云自然语言处理算法
代码:importre#导入正则表达式库importjieba#导入结巴分词库importcollections#导入集合库importnumpy#导入numpy库importwordcloud#导入词云库fromPILimportImage#导入PIL图像处理库importmatplotlib.pyplotasplt#导入matplotlib绘图库fromwordcloudimportImage
- ASFF算法
神笔馬良
Python入门知识深度学习人工智能
1.特征金字塔的缺点:对于单发检测器,在不同尺度上的不一致。2.采用启发式引导的特征选择:大实例通常与上层特征映射相关联,小实例与下层特征映射相关联。3.解决的问题:如果一幅图像同时包含大小目标,则不同层次特征之间的冲突往往占据特征金字塔的主要部分。这种不一致性干扰了训练过程中的梯度计算,降低了特征金字塔的有效性。4.这个问题存在的原因:当一个对象在某一层特征图中被赋值并被视为正值时,其他层特征图
- Xxl-job 3.0.0 切换postgresql数据库执行器无法注册
lbyxkey
java
项目场景:提示:这里简述项目相关背景:例如:项目场景:示例:通过蓝牙芯片(HC-05)与手机APP通信,每隔5s传输一批传感器数据(不是很大)问题描述提示:这里描述项目中遇到的问题:例如:数据传输过程中数据不时出现丢失的情况,偶尔会丢失一部分数据APP中接收数据代码:@Overridepublicvoidrun(){bytes=mmInStream.read(buffer);mHandler.ob
- 【音视频】编解码相关概念总结
gma999
音视频
NALURTPPS流三者总体关系NALU在RTP中的应用:视频流的RTP传输通常将NALU作为基本的单元进行传输。每个RTP包携带一个或多个NALU,这些NALU包含了视频编码数据。RTP协议通过其头部信息(如时间戳、序列号等)帮助接收端重新排列和解码这些NALUPS流和NALU的转化:PS流本质上是一个容器,它可以封装多个NALU。在将PS流通过网络传输时,通常会将其分解成一个个NALU,然后通
- VQ-Diffusion 深度解析与实战指南
晏灵昀Odette
VQ-Diffusion深度解析与实战指南VQ-Diffusion项目地址:https://gitcode.com/gh_mirrors/vqd/VQ-Diffusion1.项目介绍VQ-Diffusion是一个用于文本到图像合成的深度学习模型,基于矢量量化变分自编码器(VQ-VAE)和去噪扩散概率模型(DenoisingDiffusionProbabilisticModel)。该模型通过将DDP
- http 协议和 https 协议的区别在哪里?【详情解答】
ssk521125
人工智能开发语言其他
HTTP(超文本传输协议)和HTTPS(超文本传输安全协议)都是用于在网络上传输数据的协议,二者存在多方面的区别,具体如下:安全性:这是HTTP和HTTPS最主要的区别。HTTP协议是明文传输数据,数据在传输过程中没有经过加密处理,很容易被中间人截取、监听和篡改,存在较大的安全风险。比如,用户在使用HTTP协议的网站上输入账号密码,这些信息可能会被黑客获取。HTTPS协议在HTTP的基础上加入了S
- yolo格式
ZHOU_WUYI
ultralyticsYOLO人工智能
目录yolo格式yolo格式与coco格式的区别1.数据结构2.标注内容3.文件格式4.扩展性5.应用场景总结:yolo格式YOLO(YouOnlyLookOnce)格式通常用于目标检测任务中的标注数据格式。YOLO的标注格式包括每个目标的类别和其在图像中的位置(boundingbox)。YOLO格式的标注文件是一个文本文件,每一行表示一个目标,内容包括目标类别的编号和该目标在图像中的位置(相对于
- DeepSeek全栈接入指南:从零到生产环境的深度实践
量子纠缠BUG
DeepSeek部署AIDeepSeek人工智能深度学习机器学习
第一章:DeepSeek技术体系全景解析1.1认知DeepSeek技术生态DeepSeek作为新一代人工智能技术平台,构建了覆盖算法开发、模型训练、服务部署的全链路技术栈。其核心能力体现在:1.1.1多模态智能引擎自然语言处理:支持文本生成(NLG)、语义理解(NLU)、情感分析等计算机视觉:提供图像分类、目标检测、OCR识别等CV能力语音交互:包含语音识别(ASR)、语音合成(TTS)及声纹识别
- UNet:UNet在自然环境监测中的应用案例_2024-07-24_09-14-11.Tex
chenjj4003
游戏开发2深度学习计算机视觉人工智能性能优化游戏前端javascript
UNet:UNet在自然环境监测中的应用案例UNet模型概述UNet是一种广泛应用于图像分割任务的卷积神经网络模型,由OlafRonneberger、PhilippFischer和ThomasBrox在2015年提出。其设计初衷是为了在生物医学图像分析中进行细胞和组织的精确分割,但因其高效性和准确性,迅速在自然环境监测、遥感图像分析、卫星图像处理等领域找到了应用。架构原理UNet模型采用了一个编码
- 半导体晶圆精控:ethercat转profient网关数据提升制造精度
北京耐用通信
制造网络ethercatethercat总线
数据采集系统通过网关连接离子注入机,精细控制半导体晶圆制造过程中的关键参数。在半导体制造中,晶圆制造设备的精密控制是决定产品性能的关键因素。某半导体工厂采用耐达讯Profinet转EtherCAT协议网关NY-PN-ECATM,将其数据采集系统与离子注入机连接,实现了晶圆制造过程的精细控制与高效管理。Profinet网络负责传输数据采集系统中的各类监测数据,如温度、压力和电流等参数。这些数据通过网
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><