/*M///
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/*
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
#define USE_IPP_CANNY 1
#else
#undef USE_IPP_CANNY
#endif
*/
#ifdef USE_IPP_CANNY
namespace cv
{
static bool ippCanny(const Mat& _src, Mat& _dst, float low, float high)
{
int size = 0, size1 = 0;
IppiSize roi = { _src.cols, _src.rows };
ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size);
ippiFilterSobelHorizGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size1);
size = std::max(size, size1);
ippiCannyGetSize(roi, &size1);
size = std::max(size, size1);
AutoBuffer buf(size + 64);
uchar* buffer = alignPtr((uchar*)buf, 32);
Mat _dx(_src.rows, _src.cols, CV_16S);
if( ippiFilterSobelNegVertBorder_8u16s_C1R(_src.data, (int)_src.step,
_dx.ptr(), (int)_dx.step, roi,
ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 )
return false;
Mat _dy(_src.rows, _src.cols, CV_16S);
if( ippiFilterSobelHorizBorder_8u16s_C1R(_src.data, (int)_src.step,
_dy.ptr(), (int)_dy.step, roi,
ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 )
return false;
if( ippiCanny_16s8u_C1R(_dx.ptr(), (int)_dx.step,
_dy.ptr(), (int)_dy.step,
_dst.data, (int)_dst.step, roi, low, high, buffer) < 0 )
return false;
return true;
}
}
#endif
void cv::Canny( InputArray _src, OutputArray _dst,
double low_thresh, double high_thresh,
int aperture_size, bool L2gradient )
{
Mat src = _src.getMat(); //输入图像,必须为单通道灰度图
CV_Assert( src.depth() == CV_8U ); // 8位无符号
_dst.create(src.size(), CV_8U); //根据src的大小构造目标矩阵dst
Mat dst = _dst.getMat(); //输出图像,为单通道黑白图
// low_thresh 表示低阈值, high_thresh表示高阈值
// aperture_size 表示算子大小,默认为3
// L2gradient计算梯度幅值的标识,默认为false
// 如果L2gradient为false 并且 apeture_size的值为-1(-1的二进制标识为:1111 1111)
// L2gradient为false 则计算sobel导数时,用G = |Gx|+|Gy|
// L2gradient为true 则计算sobel导数时,用G = Math.sqrt((Gx)^2 + (Gy)^2) 根号下 开平方
if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT)
{
// CV_CANNY_L2_GRADIENT 宏定义其值为: Value = (1<<31) 1左移31位 即2147483648
//backward compatibility
// ~标识按位取反
aperture_size &= ~CV_CANNY_L2_GRADIENT;//相当于取绝对值
L2gradient = true;
}
// 判别条件1:aperture_size是奇数
// 判别条件2: aperture_size的范围应当是[3,7], 默认值3
if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7)))
CV_Error(CV_StsBadFlag, ""); // 报错
if (low_thresh > high_thresh) // 如果低阈值 > 高阈值
std::swap(low_thresh, high_thresh); // 则交换低阈值和高阈值
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::canny(src, dst, low_thresh, high_thresh, aperture_size, L2gradient))
return;
#endif
#ifdef USE_IPP_CANNY
if( aperture_size == 3 && !L2gradient &&
ippCanny(src, dst, (float)low_thresh, (float)high_thresh) )
return;
#endif
const int cn = src.channels(); // cn为输入图像的通道数
Mat dx(src.rows, src.cols, CV_16SC(cn)); // 存储 x方向 方向导数的矩阵,CV_16SC(cn):16位有符号cn通道
Mat dy(src.rows, src.cols, CV_16SC(cn)); // 存储 y方向 方向导数的矩阵 ......
/*Sobel参数说明:(参考cvSobel)
cvSobel(
const CvArr* src, // 输入图像
CvArr* dst, // 输入图像
int xorder, // x方向求导的阶数
int yorder, // y方向求导的阶数
int aperture_size = 3 // 滤波器的宽和高 必须是奇数
);
*/
// BORDER_REPLICATE 表示当卷积点在图像的边界时,原始图像边缘的像素会被复制,并用复制的像素扩展原始图的尺寸
// 计算x方向的sobel方向导数,计算结果存在dx中
Sobel(src, dx, CV_16S, 1, 0, aperture_size, 1, 0, cv::BORDER_REPLICATE);
// 计算y方向的sobel方向导数,计算结果存在dy中
Sobel(src, dy, CV_16S, 0, 1, aperture_size, 1, 0, cv::BORDER_REPLICATE);
//L2gradient为true时, 表示需要根号下开平方运算,阈值也需要平方
if (L2gradient)
{
low_thresh = std::min(32767.0, low_thresh);
high_thresh = std::min(32767.0, high_thresh);
if (low_thresh > 0) low_thresh *= low_thresh; //低阈值平方运算
if (high_thresh > 0) high_thresh *= high_thresh; //高阈值平方运算
}
int low = cvFloor(low_thresh); // cvFloor返回不大于参数的最大整数值, 相当于取整
int high = cvFloor(high_thresh);
// ptrdiff_t 是C/C++标准库中定义的一个数据类型,signed类型,通常用于存储两个指针的差(距离),可以是负数
// mapstep 用于存放
ptrdiff_t mapstep = src.cols + 2; // +2 表示左右各扩展一条边
// AutoBuffer 会自动分配一定大小的内存,并且指定内存中的数据类型是uchar
// 列数 +2 表示图像左右各自扩展一条边 (用于复制边缘像素,扩大原始图像)
// 行数 +2 表示图像上下各自扩展一条边
AutoBuffer buffer((src.cols+2)*(src.rows+2) + cn * mapstep * 3 * sizeof(int));
int* mag_buf[3]; //定义一个大小为3的int型指针数组,
mag_buf[0] = (int*)(uchar*)buffer;
mag_buf[1] = mag_buf[0] + mapstep*cn;
mag_buf[2] = mag_buf[1] + mapstep*cn;
memset(mag_buf[0], 0, /* cn* */mapstep*sizeof(int));
uchar* map = (uchar*)(mag_buf[2] + mapstep*cn);
memset(map, 1, mapstep);
memset(map + mapstep*(src.rows + 1), 1, mapstep);
int maxsize = std::max(1 << 10, src.cols * src.rows / 10); // 2的10次幂 1024
std::vector stack(maxsize); // 定义指针类型向量,用于存地址
uchar **stack_top = &stack[0]; // 栈顶指针(指向指针的指针),指向stack[0], stack[0]也是一个指针
uchar **stack_bottom = &stack[0]; // 栈底指针 ,初始时 栈底指针 == 栈顶指针
// 梯度的方向被近似到四个角度之一 (0, 45, 90, 135 四选一)
/* sector numbers
(Top-Left Origin)
1 2 3
* * *
* * *
0*******0
* * *
* * *
3 2 1
*/
// define 定义函数块
// CANNY_PUSH(d) 是入栈函数, 参数d表示地址指针,让该指针指向的内容为2(int型强制转换成uchar型),并入栈,栈顶指针+1
// 2表示 像素属于某条边缘 可以看下方的注释
// CANNY_POP(d) 是出栈函数, 栈顶指针-1,然后将-1后的栈顶指针指向的值,赋给d
#define CANNY_PUSH(d) *(d) = uchar(2), *stack_top++ = (d)
#define CANNY_POP(d) (d) = *--stack_top
// calculate magnitude and angle of gradient, perform non-maxima suppression.
// fill the map with one of the following values:
// 0 - the pixel might belong to an edge 可能属于边缘
// 1 - the pixel can not belong to an edge 不属于边缘
// 2 - the pixel does belong to an edge 一定属于边缘
// for内进行非极大值抑制 + 滞后阈值处理
for (int i = 0; i <= src.rows; i++) // i 表示第i行
{
// i == 0 时,_norm 指向 mag_buf[1]
// i > 0 时, _norm 指向 mag_buf[2]
// +1 表示跳过每行的第一个元素,因为是后扩展的边,不可能是边缘
int* _norm = mag_buf[(i > 0) + 1] + 1;
if (i < src.rows)
{
short* _dx = dx.ptr(i); // _dx指向dx矩阵的第i行
short* _dy = dy.ptr(i); // _dy指向dy矩阵的第i行
if (!L2gradient) // 如果 L2gradient为false
{
for (int j = 0; j < src.cols*cn; j++) // 对第i行里的每一个值都进行计算
_norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j])); // 用||+||计算
}
else
{
for (int j = 0; j < src.cols*cn; j++)
//用平方计算,当 L2gradient为 true时,高低阈值都被平方了,所以此处_norm[j]无需开平方
_norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j]; //
}
if (cn > 1) // 如果不是单通道
{
for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn)
{
int maxIdx = jn;
for(int k = 1; k < cn; ++k)
if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k;
_norm[j] = _norm[maxIdx];
_dx[j] = _dx[maxIdx];
_dy[j] = _dy[maxIdx];
}
}
_norm[-1] = _norm[src.cols] = 0; // 最后一列和第一列的梯度幅值设置为0
}
// 当i == src.rows (最后一行)时,申请空间并且每个空间的值初始化为0, 存储在mag_buf[2]中
else
memset(_norm-1, 0, /* cn* */mapstep*sizeof(int));
// at the very beginning we do not have a complete ring
// buffer of 3 magnitude rows for non-maxima suppression
if (i == 0)
continue;
uchar* _map = map + mapstep*i + 1; // _map 指向第 i+1 行,+1表示跳过该行第一个元素
_map[-1] = _map[src.cols] = 1; // 第一列和最后一列不是边缘,所以设置为1
int* _mag = mag_buf[1] + 1; // take the central row 中间那一行
ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1];
ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1];
const short* _x = dx.ptr(i-1);
const short* _y = dy.ptr(i-1);
// 如果栈的大小不够,则重新为栈分配内存(相当于扩大容量)
if ((stack_top - stack_bottom) + src.cols > maxsize)
{
int sz = (int)(stack_top - stack_bottom);
maxsize = maxsize * 3/2;
stack.resize(maxsize);
stack_bottom = &stack[0];
stack_top = stack_bottom + sz;
}
int prev_flag = 0; //前一个像素点 0:非边缘点 ;1:边缘点
for (int j = 0; j < src.cols; j++) // 第 j 列
{
#define CANNY_SHIFT 15
// tan22.5
const int TG22 = (int)(0.4142135623730950488016887242097*(1< low) // 如果大于低阈值
{
int xs = _x[j]; // dx中 第i-1行 第j列
int ys = _y[j]; // dy中 第i-1行 第j列
int x = std::abs(xs);
int y = std::abs(ys) << CANNY_SHIFT;
int tg22x = x * TG22;
if (y < tg22x) //角度小于22.5 用区间表示:[0, 22.5)
{
// 与左右两点的梯度幅值比较,如果比左右都大
//(此时当前点是左右邻域内的极大值),则 goto __ocv_canny_push 执行入栈操作
if (m > _mag[j-1] && m >= _mag[j+1]) goto __ocv_canny_push;
}
else //角度大于22.5
{
int tg67x = tg22x + (x << (CANNY_SHIFT+1));
if (y > tg67x) //(67.5, 90)
{
//与上下两点的梯度幅值比较,如果比上下都大
//(此时当前点是左右邻域内的极大值),则 goto __ocv_canny_push 执行入栈操作
if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) goto __ocv_canny_push;
}
else //[22.5, 67.5]
{
// ^ 按位异或 如果xs与ys异号 则取-1 否则取1
int s = (xs ^ ys) < 0 ? -1 : 1;
//比较对角线邻域
if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) goto __ocv_canny_push;
}
}
}
//比当前的梯度幅值低阈值还低,直接被确定为非边缘
prev_flag = 0;
_map[j] = uchar(1); // 1 表示不属于边缘
continue;
__ocv_canny_push:
// 前一个点不是边缘点 并且 当前点的幅值大于高阈值(大于高阈值被视为边缘像素) 并且 正上方的点不是边缘点
if (!prev_flag && m > high && _map[j-mapstep] != 2)
{
//将当前点的地址入栈,入栈前,会将该点地址指向的值设置为2(查看上面的宏定义函数块里)
CANNY_PUSH(_map + j);
prev_flag = 1;
}
else
_map[j] = 0;
}
// scroll the ring buffer
// 交换指针指向的位置,向上覆盖,把mag_[1]的内容覆盖到mag_buf[0]上
// 把mag_[2]的内容覆盖到mag_buf[1]上
// 最后 让mag_buf[2]指向_mag指向的那一行
_mag = mag_buf[0];
mag_buf[0] = mag_buf[1];
mag_buf[1] = mag_buf[2];
mag_buf[2] = _mag;
}
// now track the edges (hysteresis thresholding)
// 通过上面的for循环,确定了各个邻域内的极大值点为边缘点(标记为2)
// 现在,在这些边缘点的8邻域内(上下左右+4个对角),将可能的边缘点(标记为0)确定为边缘
while (stack_top > stack_bottom)
{
uchar* m;
if ((stack_top - stack_bottom) + 8 > maxsize)
{
int sz = (int)(stack_top - stack_bottom);
maxsize = maxsize * 3/2;
stack.resize(maxsize);
stack_bottom = &stack[0];
stack_top = stack_bottom + sz;
}
CANNY_POP(m); // 出栈
if (!m[-1]) CANNY_PUSH(m - 1);
if (!m[1]) CANNY_PUSH(m + 1);
if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1);
if (!m[-mapstep]) CANNY_PUSH(m - mapstep);
if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1);
if (!m[mapstep-1]) CANNY_PUSH(m + mapstep - 1);
if (!m[mapstep]) CANNY_PUSH(m + mapstep);
if (!m[mapstep+1]) CANNY_PUSH(m + mapstep + 1);
}
// the final pass, form the final image
// 生成边缘图
const uchar* pmap = map + mapstep + 1;
uchar* pdst = dst.ptr();
for (int i = 0; i < src.rows; i++, pmap += mapstep, pdst += dst.step)
{
for (int j = 0; j < src.cols; j++)
pdst[j] = (uchar)-(pmap[j] >> 1);
}
}
void cvCanny( const CvArr* image, CvArr* edges, double threshold1,
double threshold2, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(image), dst = cv::cvarrToMat(edges);
CV_Assert( src.size == dst.size && src.depth() == CV_8U && dst.type() == CV_8U );
cv::Canny(src, dst, threshold1, threshold2, aperture_size & 255,
(aperture_size & CV_CANNY_L2_GRADIENT) != 0);
}
/* End of file. */