(3) windows下可运行的mat转xml,VOC-release4.01 DPM训练的model(mat)转为OpenCV latentsvm可以加载的model(xml)

opencv例程文件夹内有mat2xml.m文件,但是不好用,提示未能找到rootfilter,说明与mat中格式并不统一。下面的matlab代码可以无问题的实现mat2xml功能:

% jelly 2013-08-12

% Convert *.mat format model in the source example in 
% Discriminatively Trained Deformable Part Models "voc-release4.01"
% to opencv's latentSVM detect input format *.xml

function MAT2XMLmodel_401(matmodel, xmlfile)

matmodel = 'INRIA/inriaperson_final';
xmlfile = 'INRIA/inriaperson_final.xml';

load(matmodel);
fid = fopen(xmlfile, 'w');

fprintf(fid, '\n');
%%
%获取组件数
ncom = length(model.rules{model.start});
fprintf(fid, '\t\n');
fprintf(fid, '\t%d\n', ncom);
%获取特征维数,固定值31维。model中没有记录
nfeature = 31;
fprintf(fid, '\t\n');
fprintf(fid, '\t

%d

\n', nfeature); %Score threshold=model.thresh fprintf(fid, '\t\n'); fprintf(fid, '\t%.16f\n', model.thresh); layer = 1; %对于每一个组件分别获取它的root filter、part filter、deformation filter for icom = 1:ncom fprintf(fid, '\t\n'); fprintf(fid, '\t\t\n'); fprintf(fid, '\t\t\n'); % attention: X,Y swap rhs = model.rules{model.start}(icom).rhs; % assume the root filter is first on the rhs of the start rules if model.symbols(rhs(1)).type == 'T' % handle case where there's no deformation model for the root root = model.symbols(rhs(1)).filter; else % handle case where there is a deformation model for the root root = model.symbols(model.rules{rhs(1)}(layer).rhs).filter; end filternum = root; sizeX = model.filters(filternum).size(2); sizeY = model.filters(filternum).size(1); fprintf(fid, '\t\t\t\n'); fprintf(fid, '\t\t\t%d\n', sizeX); fprintf(fid, '\t\t\t%d\n', sizeY); fprintf(fid, '\t\t\t\n'); fprintf(fid, '\t\t\t'); for iY = 1:sizeY for iX = 1:sizeX % original mat has 32 which is larger than nfeature=31 by 1 fwrite(fid, model.filters(filternum).w(iY,iX,1:nfeature), 'double'); % need verify end end fprintf(fid, '\t\t\t\n'); fprintf(fid, '\t\t\t\n'); fprintf(fid, '\t\t\t%.16f\n', ... % need verify model.rules{model.start}(icom).offset.w); fprintf(fid, '\t\t\n'); fprintf(fid, '\t\t\n'); fprintf(fid, '\t\t\n'); %在每个component内,获取part filter的个数,并获取每个part的参数 npart = length(model.rules{model.start}(icom).rhs) -1 ; fprintf(fid, '\t\t\t%d\n', npart); %%获取每个part的相关参数[dx,dy,ds]和penalty[dx dy dxx dyy] for ipart = 2: npart+1 fprintf(fid, '\t\t\t\n'); fprintf(fid, '\t\t\t\n'); irule = model.rules{model.start}(icom).rhs(ipart); filternum = model.symbols(model.rules{irule}.rhs).filter; sizeX = model.filters(filternum).size(2); sizeY = model.filters(filternum).size(1); fprintf(fid, '\t\t\t\t%d\n', sizeX); fprintf(fid, '\t\t\t\t%d\n', sizeY); fprintf(fid, '\t\t\t\t\n'); fprintf(fid, '\t\t\t\t'); for iY = 1:sizeY for iX = 1:sizeX % original mat has 32 which is larger than nfeature=31 by 1 fwrite(fid, model.filters(filternum).w(iY,iX,1:nfeature), 'double'); % need verify end end fprintf(fid, '\t\t\t\t\n'); fprintf(fid, '\t\t\t\t\n'); fprintf(fid, '\t\t\t\t\n'); fprintf(fid, '\t\t\t\t\t%d\n',model.rules{model.start}(icom).anchor{ipart}(1)+1); %[dx,dy,ds] fprintf(fid, '\t\t\t\t\t%d\n',model.rules{model.start}(icom).anchor{ipart}(2)+1); fprintf(fid, '\t\t\t\t\n'); fprintf(fid, '\t\t\t\t\n'); fprintf(fid, '\t\t\t\t\n'); fprintf(fid, '\t\t\t\t\t%.16f\n',model.rules{irule}.def.w(2)); fprintf(fid, '\t\t\t\t\t%.16f\n',model.rules{irule}.def.w(4)); fprintf(fid, '\t\t\t\t\t%.16f\n',model.rules{irule}.def.w(1)); fprintf(fid, '\t\t\t\t\t%.16f\n',model.rules{irule}.def.w(3)); fprintf(fid, '\t\t\t\t\n'); fprintf(fid, '\t\t\t\n'); end fprintf(fid, '\t\t\n'); fprintf(fid, '\t\n'); end fprintf(fid, '
\n'); fclose(fid); end


你可能感兴趣的:(模式识别)