作者:桂。
时间:2017-03-06 20:57:22
链接:http://www.cnblogs.com/xingshansi/p/6511916.html
前言
本文为Hilbert变换一篇的内容补充,主要内容为:
1)EMD原理介绍
2)代码分析
3)一种权衡的小trick
4)问题补充
内容主要为自己的学习总结,并多有借鉴他人,最后一并给出链接。
一、EMD原理介绍
A-EMD的意义
很多人都知道EMD(Empirical Mode Decomposition)可以将信号分解不同频率特性,并且结合Hilbert求解包络以及瞬时频率。EMD、Hilbert、瞬时频率三者有无内在联系?答案是:有。
按照Hilbert变换一篇的介绍,
$f(t) = \frac{{d\Phi (t)}}{{d(t)}}$
然而,这样求解瞬时频率在某些情况下有问题,可能出现$f(t)$为负的情况:我1秒手指动5下,频率是5Hz;反过来,频率为8Hz时,手指1秒动8下,可如果频率为-5Hz呢?负频率没有意义。
考虑信号
$x(t) = {x_1}(t) + {x_2}(t) = {A_1}{e^{j{\omega _1}t}} + {A_2}{e^{j{\omega _2}t}} = A(t){e^{j\varphi (t)}}$
为了简单起见,假设$A_1$和$A_2$恒定,且$\omega_1$和$\omega_2$是正的。信号$x(t)$的频谱应由两个在$\omega_1$和$\omega_2$的$\delta$函数组成,即
$X(\omega ) = {A_1}\delta (\omega - {\omega _1}) + {A_2}\delta (\omega - {\omega _2})$
因为假设$\omega_1$和$\omega_2$是正的,所以该信号解析。求得相位
$\Phi (t) = \frac{{{A_1}\sin {\omega _1}t + {A_{\rm{2}}}\sin {\omega _{\rm{2}}}t}}{{{A_1}\cos {\omega _1}t + {A_{\rm{2}}}\cos {\omega _{\rm{2}}}t}}$
分别取两组参数,对$t$求导,得到对应参数下的瞬时频率:
参数:
$\omega_1 = 10Hz$和$\omega_2 = 20Hz$.
- 组1:{$A_1 = 0.2, A_2 = 1$};
- 组2:{$A_1 = 1.2, A_2 = 1$}
对于组2,瞬时频率出现了负值。
可见:
对任意信号进行Hilbert变换,可能出现无法解释、缺乏实际意义的频率分量。Norden E. Hung等人对瞬时频率进行研究后发现,只有满足特定条件的信号,其瞬时频率才具有物理意义,并将此类信号成为:IMF/基本模式分量。
B-EMD基本原理
此处给一个原理图:
C-基本模式分量(IMF)
EMD分解的IMF其瞬时频率具有实际物理意义,原因有两点:
- 限定1:
- 在整个数据序列中,极值点的数量$N_e$(包括极大值、极小值点)与过零点的数量必须相等,或最多相差1个,即$(N_e-1) \le N_e \ge (N_e+1)$.
- 限定2:
- 在任意时间点$t_i$上,信号局部极大值确定的上包络线$f_{max}(t)$和局部极小值确定的下包络线$f_{min}(t)$的均值为0.
限定1即要求信号具有类似传统平稳高斯过程的分布;限定2要求局部均值为0,同时用局部最大、最小值的包络作为近似,从而信号局部对称,避免了不对称带来的瞬时频率波动。
D-VMD
关于VMD(Variational Mode Decomposition),具体原理可以参考其论文,这里我们只要记住一点:其分解的各个基本分量——即各解析信号的瞬时频率具有实际的物理意义。
二、代码分析
首先给出信号分别用VMD、EMD的分解结果:
给出对应的代码:
%--------------- Preparation clear all; close all; clc; % Time Domain 0 to T T = 1000; fs = 1/T; t = (1:T)/T; freqs = 2*pi*(t-0.5-1/T)/(fs); % center frequencies of components f_1 = 2; f_2 = 24; f_3 = 288; % modes v_1 = (cos(2*pi*f_1*t)); v_2 = 1/4*(cos(2*pi*f_2*t)); v_3 = 1/16*(cos(2*pi*f_3*t)); % for visualization purposes wsub{1} = 2*pi*f_1; wsub{2} = 2*pi*f_2; wsub{3} = 2*pi*f_3; % composite signal, including noise f = v_1 + v_2 + v_3 + 0.1*randn(size(v_1)); % some sample parameters for VMD alpha = 2000; % moderate bandwidth constraint tau = 0; % noise-tolerance (no strict fidelity enforcement) K = 4; % 4 modes DC = 0; % no DC part imposed init = 1; % initialize omegas uniformly tol = 1e-7; %--------------- Run actual VMD code [u, u_hat, omega] = VMD(f, alpha, tau, K, DC, init, tol); subplot(size(u,1)+1,2,1); plot(t,f,'k');grid on; title('VMD分解'); subplot(size(u,1)+1,2,2); plot(freqs,abs(fft(f)),'k');grid on; title('对应频谱'); for i = 2:size(u,1)+1 subplot(size(u,1)+1,2,i*2-1); plot(t,u(i-1,:),'k');grid on; subplot(size(u,1)+1,2,i*2); plot(freqs,abs(fft(u(i-1,:))),'k');grid on; end %---------------run EMD code imf = emd(f); figure; subplot(size(imf,1)+1,2,1); plot(t,f,'k');grid on; title('EMD分解'); subplot(size(imf,1)+1,2,2); plot(freqs,abs(fft(f)),'k');grid on; title('对应频谱'); for i = 2:size(imf,1)+1 subplot(size(imf,1)+1,2,i*2-1); plot(t,imf(i-1,:),'k');grid on; subplot(size(imf,1)+1,2,i*2); plot(freqs,abs(fft(imf(i-1,:))),'k');grid on; end
附上两个子程序的code.
VMD:
function [u, u_hat, omega] = VMD(signal, alpha, tau, K, DC, init, tol) % Variational Mode Decomposition % Authors: Konstantin Dragomiretskiy and Dominique Zosso % [email protected] --- http://www.math.ucla.edu/~zosso % Initial release 2013-12-12 (c) 2013 % % Input and Parameters: % --------------------- % signal - the time domain signal (1D) to be decomposed % alpha - the balancing parameter of the data-fidelity constraint % tau - time-step of the dual ascent ( pick 0 for noise-slack ) % K - the number of modes to be recovered % DC - true if the first mode is put and kept at DC (0-freq) % init - 0 = all omegas start at 0 % 1 = all omegas start uniformly distributed % 2 = all omegas initialized randomly % tol - tolerance of convergence criterion; typically around 1e-6 % % Output: % ------- % u - the collection of decomposed modes % u_hat - spectra of the modes % omega - estimated mode center-frequencies % % When using this code, please do cite our paper: % ----------------------------------------------- % K. Dragomiretskiy, D. Zosso, Variational Mode Decomposition, IEEE Trans. % on Signal Processing (in press) % please check here for update reference: % http://dx.doi.org/10.1109/TSP.2013.2288675 %---------- Preparations % Period and sampling frequency of input signal save_T = length(signal); fs = 1/save_T; % extend the signal by mirroring T = save_T; f_mirror(1:T/2) = signal(T/2:-1:1); f_mirror(T/2+1:3*T/2) = signal; f_mirror(3*T/2+1:2*T) = signal(T:-1:T/2+1); f = f_mirror; % Time Domain 0 to T (of mirrored signal) T = length(f); t = (1:T)/T; % Spectral Domain discretization freqs = t-0.5-1/T; % Maximum number of iterations (if not converged yet, then it won't anyway) N = 500; % For future generalizations: individual alpha for each mode Alpha = alpha*ones(1,K); % Construct and center f_hat f_hat = fftshift((fft(f))); f_hat_plus = f_hat; f_hat_plus(1:T/2) = 0; % matrix keeping track of every iterant // could be discarded for mem u_hat_plus = zeros(N, length(freqs), K); % Initialization of omega_k omega_plus = zeros(N, K); switch init case 1 for i = 1:K omega_plus(1,i) = (0.5/K)*(i-1); end case 2 omega_plus(1,:) = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1,K))); otherwise omega_plus(1,:) = 0; end % if DC mode imposed, set its omega to 0 if DC omega_plus(1,1) = 0; end % start with empty dual variables lambda_hat = zeros(N, length(freqs)); % other inits uDiff = tol+eps; % update step n = 1; % loop counter sum_uk = 0; % accumulator % ----------- Main loop for iterative updates while ( uDiff > tol && n < N ) % not converged and below iterations limit % update first mode accumulator k = 1; sum_uk = u_hat_plus(n,:,K) + sum_uk - u_hat_plus(n,:,1); % update spectrum of first mode through Wiener filter of residuals u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2); % update first omega if not held at 0 if ~DC omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2)')/sum(abs(u_hat_plus(n+1,T/2+1:T,k)).^2); end % update of any other mode for k=2:K % accumulator sum_uk = u_hat_plus(n+1,:,k-1) + sum_uk - u_hat_plus(n,:,k); % mode spectrum u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2); % center frequencies omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2)')/sum(abs(u_hat_plus(n+1,T/2+1:T,k)).^2); end % Dual ascent lambda_hat(n+1,:) = lambda_hat(n,:) + tau*(sum(u_hat_plus(n+1,:,:),3) - f_hat_plus); % loop counter n = n+1; % converged yet? uDiff = eps; for i=1:K uDiff = uDiff + 1/T*(u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i))*conj((u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i)))'; end uDiff = abs(uDiff); end %------ Postprocessing and cleanup % discard empty space if converged early N = min(N,n); omega = omega_plus(1:N,:); % Signal reconstruction u_hat = zeros(T, K); u_hat((T/2+1):T,:) = squeeze(u_hat_plus(N,(T/2+1):T,:)); u_hat((T/2+1):-1:2,:) = squeeze(conj(u_hat_plus(N,(T/2+1):T,:))); u_hat(1,:) = conj(u_hat(end,:)); u = zeros(K,length(t)); for k = 1:K u(k,:)=real(ifft(ifftshift(u_hat(:,k)))); end % remove mirror part u = u(:,T/4+1:3*T/4); % recompute spectrum clear u_hat; for k = 1:K u_hat(:,k)=fftshift(fft(u(k,:)))'; end end
EMD:
%EMD computes Empirical Mode Decomposition % % % Syntax % % % IMF = EMD(X) % IMF = EMD(X,...,'Option_name',Option_value,...) % IMF = EMD(X,OPTS) % [IMF,ORT,NB_ITERATIONS] = EMD(...) % % % Description % % % IMF = EMD(X) where X is a real vector computes the Empirical Mode % Decomposition [1] of X, resulting in a matrix IMF containing 1 IMF per row, the % last one being the residue. The default stopping criterion is the one proposed % in [2]: % % at each point, mean_amplitude < THRESHOLD2*envelope_amplitude % & % mean of boolean array {(mean_amplitude)/(envelope_amplitude) > THRESHOLD} < TOLERANCE % & % |#zeros-#extrema|<=1 % % where mean_amplitude = abs(envelope_max+envelope_min)/2 % and envelope_amplitude = abs(envelope_max-envelope_min)/2 % % IMF = EMD(X) where X is a complex vector computes Bivariate Empirical Mode % Decomposition [3] of X, resulting in a matrix IMF containing 1 IMF per row, the % last one being the residue. The default stopping criterion is similar to the % one proposed in [2]: % % at each point, mean_amplitude < THRESHOLD2*envelope_amplitude % & % mean of boolean array {(mean_amplitude)/(envelope_amplitude) > THRESHOLD} < TOLERANCE % % where mean_amplitude and envelope_amplitude have definitions similar to the % real case % % IMF = EMD(X,...,'Option_name',Option_value,...) sets options Option_name to % the specified Option_value (see Options) % % IMF = EMD(X,OPTS) is equivalent to the above syntax provided OPTS is a struct % object with field names corresponding to option names and field values being the % associated values % % [IMF,ORT,NB_ITERATIONS] = EMD(...) returns an index of orthogonality % ________ % _ |IMF(i,:).*IMF(j,:)| % ORT = \ _____________________ % / % ? || X ||?% i~=j % % and the number of iterations to extract each mode in NB_ITERATIONS % % % Options % % % stopping criterion options: % % STOP: vector of stopping parameters [THRESHOLD,THRESHOLD2,TOLERANCE] % if the input vector's length is less than 3, only the first parameters are % set, the remaining ones taking default values. % default: [0.05,0.5,0.05] % % FIX (int): disable the default stopping criterion and do exactly% number of sifting iterations for each mode % % FIX_H (int): disable the default stopping criterion and do sifting % iterations with |#zeros-#extrema|<=1 to stop [4] % % bivariate/complex EMD options: % % COMPLEX_VERSION: selects the algorithm used for complex EMD ([3]) % COMPLEX_VERSION = 1: "algorithm 1" % COMPLEX_VERSION = 2: "algorithm 2" (default) % % NDIRS: number of directions in which envelopes are computed (default 4) % rem: the actual number of directions (according to [3]) is 2*NDIRS % % other options: % % T: sampling times (line vector) (default: 1:length(x)) % % MAXITERATIONS: maximum number of sifting iterations for the computation of each % mode (default: 2000) % % MAXMODES: maximum number of imfs extracted (default: Inf) % % DISPLAY: if equals to 1 shows sifting steps with pause % if equals to 2 shows sifting steps without pause (movie style) % rem: display is disabled when the input is complex % % INTERP: interpolation scheme: 'linear', 'cubic', 'pchip' or 'spline' (default) % see interp1 documentation for details % % MASK: masking signal used to improve the decomposition according to [5] % % % Examples % % %X = rand(1,512); % %IMF = emd(X); % %IMF = emd(X,'STOP',[0.1,0.5,0.05],'MAXITERATIONS',100); % %T=linspace(0,20,1e3); %X = 2*exp(i*T)+exp(3*i*T)+.5*T; %IMF = emd(X,'T',T); % %OPTIONS.DISLPAY = 1; %OPTIONS.FIX = 10; %OPTIONS.MAXMODES = 3; %[IMF,ORT,NBITS] = emd(X,OPTIONS); % % % References % % % [1] N. E. Huang et al., "The empirical mode decomposition and the % Hilbert spectrum for non-linear and non stationary time series analysis", % Proc. Royal Soc. London A, Vol. 454, pp. 903-995, 1998 % % [2] G. Rilling, P. Flandrin and P. Gon鏰lves % "On Empirical Mode Decomposition and its algorithms", % IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing % NSIP-03, Grado (I), June 2003 % % [3] G. Rilling, P. Flandrin, P. Gon鏰lves and J. M. Lilly., % "Bivariate Empirical Mode Decomposition", % Signal Processing Letters (submitted) % % [4] N. E. Huang et al., "A confidence limit for the Empirical Mode % Decomposition and Hilbert spectral analysis", % Proc. Royal Soc. London A, Vol. 459, pp. 2317-2345, 2003 % % [5] R. Deering and J. F. Kaiser, "The use of a masking signal to improve % empirical mode decomposition", ICASSP 2005 % % % See also % emd_visu (visualization), % emdc, emdc_fix (fast implementations of EMD), % cemdc, cemdc_fix, cemdc2, cemdc2_fix (fast implementations of bivariate EMD), % hhspectrum (Hilbert-Huang spectrum) % % % G. Rilling, last modification: 3.2007 % [email protected] function [imf,ort,nbits] = emd(varargin) [x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,MAXMODES,INTERP,mask] = init(varargin{:}); if display_sifting fig_h = figure; end %main loop : requires at least 3 extrema to proceed while ~stop_EMD(r,MODE_COMPLEX,ndirs) && (k < MAXMODES+1 || MAXMODES == 0) && ~any(mask) % current mode m = r; % mode at previous iteration mp = m; %computation of mean and stopping criterion if FIXE [stop_sift,moyenne] = stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs); elseif FIXE_H stop_count = 0; [stop_sift,moyenne] = stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs); else [stop_sift,moyenne] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs); end % in case the current mode is so small that machine precision can cause % spurious extrema to appear if (max(abs(m))) < (1e-10)*(max(abs(x))) if ~stop_sift warning('emd:warning','forced stop of EMD : too small amplitude') else disp('forced stop of EMD : too small amplitude') end break end % sifting loop while ~stop_sift && nbit MAXITERATIONS/5 && mod(nbit,floor(MAXITERATIONS/10))==0 && ~FIXE && nbit > 100) disp(['mode ',int2str(k),', iteration ',int2str(nbit)]) if exist('s','var') disp(['stop parameter mean value : ',num2str(s)]) end [im,iM] = extr(m); disp([int2str(sum(m(im) > 0)),' minima > 0; ',int2str(sum(m(iM) < 0)),' maxima < 0.']) end %sifting m = m - moyenne; %computation of mean and stopping criterion if FIXE [stop_sift,moyenne] = stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs); elseif FIXE_H [stop_sift,moyenne,stop_count] = stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs); else [stop_sift,moyenne,s] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs); end % display if display_sifting && ~MODE_COMPLEX NBSYM = 2; [indmin,indmax] = extr(mp); [tmin,tmax,mmin,mmax] = boundary_conditions(indmin,indmax,t,mp,mp,NBSYM); envminp = interp1(tmin,mmin,t,INTERP); envmaxp = interp1(tmax,mmax,t,INTERP); envmoyp = (envminp+envmaxp)/2; if FIXE || FIXE_H display_emd_fixe(t,m,mp,r,envminp,envmaxp,envmoyp,nbit,k,display_sifting) else sxp=2*(abs(envmoyp))./(abs(envmaxp-envminp)); sp = mean(sxp); display_emd(t,m,mp,r,envminp,envmaxp,envmoyp,s,sp,sxp,sdt,sd2t,nbit,k,display_sifting,stop_sift) end end mp = m; nbit=nbit+1; NbIt=NbIt+1; if(nbit==(MAXITERATIONS-1) && ~FIXE && nbit > 100) if exist('s','var') warning('emd:warning',['forced stop of sifting : too many iterations... mode ',int2str(k),'. stop parameter mean value : ',num2str(s)]) else warning('emd:warning',['forced stop of sifting : too many iterations... mode ',int2str(k),'.']) end end end % sifting loop imf(k,:) = m; if display_sifting disp(['mode ',int2str(k),' stored']) end nbits(k) = nbit; k = k+1; r = r - m; nbit=0; end %main loop if any(r) && ~any(mask) imf(k,:) = r; end ort = io(x,imf); if display_sifting close end end %--------------------------------------------------------------------------------------------------- % tests if there are enough (3) extrema to continue the decomposition function stop = stop_EMD(r,MODE_COMPLEX,ndirs) if MODE_COMPLEX for k = 1:ndirs phi = (k-1)*pi/ndirs; [indmin,indmax] = extr(real(exp(i*phi)*r)); ner(k) = length(indmin) + length(indmax); end stop = any(ner < 3); else [indmin,indmax] = extr(r); ner = length(indmin) + length(indmax); stop = ner < 3; end end %--------------------------------------------------------------------------------------------------- % computes the mean of the envelopes and the mode amplitude estimate function [envmoy,nem,nzm,amp] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs) NBSYM = 2; if MODE_COMPLEX switch MODE_COMPLEX case 1 for k = 1:ndirs phi = (k-1)*pi/ndirs; y = real(exp(-i*phi)*m); [indmin,indmax,indzer] = extr(y); nem(k) = length(indmin)+length(indmax); nzm(k) = length(indzer); [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,y,m,NBSYM); envmin(k,:) = interp1(tmin,zmin,t,INTERP); envmax(k,:) = interp1(tmax,zmax,t,INTERP); end envmoy = mean((envmin+envmax)/2,1); if nargout > 3 amp = mean(abs(envmax-envmin),1)/2; end case 2 for k = 1:ndirs phi = (k-1)*pi/ndirs; y = real(exp(-i*phi)*m); [indmin,indmax,indzer] = extr(y); nem(k) = length(indmin)+length(indmax); nzm(k) = length(indzer); [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,y,y,NBSYM); envmin(k,:) = exp(i*phi)*interp1(tmin,zmin,t,INTERP); envmax(k,:) = exp(i*phi)*interp1(tmax,zmax,t,INTERP); end envmoy = mean((envmin+envmax),1); if nargout > 3 amp = mean(abs(envmax-envmin),1)/2; end end else [indmin,indmax,indzer] = extr(m); nem = length(indmin)+length(indmax); nzm = length(indzer); [tmin,tmax,mmin,mmax] = boundary_conditions(indmin,indmax,t,m,m,NBSYM); envmin = interp1(tmin,mmin,t,INTERP); envmax = interp1(tmax,mmax,t,INTERP); envmoy = (envmin+envmax)/2; if nargout > 3 amp = mean(abs(envmax-envmin),1)/2; end end end %------------------------------------------------------------------------------- % default stopping criterion function [stop,envmoy,s] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs) try [envmoy,nem,nzm,amp] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs); sx = abs(envmoy)./amp; s = mean(sx); stop = ~((mean(sx > sd) > tol | any(sx > sd2)) & (all(nem > 2))); if ~MODE_COMPLEX stop = stop && ~(abs(nzm-nem)>1); end catch stop = 1; envmoy = zeros(1,length(m)); s = NaN; end end %------------------------------------------------------------------------------- % stopping criterion corresponding to option FIX function [stop,moyenne]= stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs) try moyenne = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs); stop = 0; catch moyenne = zeros(1,length(m)); stop = 1; end end %------------------------------------------------------------------------------- % stopping criterion corresponding to option FIX_H function [stop,moyenne,stop_count]= stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs) try [moyenne,nem,nzm] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs); if (all(abs(nzm-nem)>1)) stop = 0; stop_count = 0; else stop_count = stop_count+1; stop = (stop_count == FIXE_H); end catch moyenne = zeros(1,length(m)); stop = 1; end end %------------------------------------------------------------------------------- % displays the progression of the decomposition with the default stopping criterion function display_emd(t,m,mp,r,envmin,envmax,envmoy,s,sb,sx,sdt,sd2t,nbit,k,display_sifting,stop_sift) subplot(4,1,1) plot(t,mp);hold on; plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r'); title(['IMF ',int2str(k),'; iteration ',int2str(nbit),' before sifting']); set(gca,'XTick',[]) hold off subplot(4,1,2) plot(t,sx) hold on plot(t,sdt,'--r') plot(t,sd2t,':k') title('stop parameter') set(gca,'XTick',[]) hold off subplot(4,1,3) plot(t,m) title(['IMF ',int2str(k),'; iteration ',int2str(nbit),' after sifting']); set(gca,'XTick',[]) subplot(4,1,4); plot(t,r-m) title('residue'); disp(['stop parameter mean value : ',num2str(sb),' before sifting and ',num2str(s),' after']) if stop_sift disp('last iteration for this mode') end if display_sifting == 2 pause(0.01) else pause end end %--------------------------------------------------------------------------------------------------- % displays the progression of the decomposition with the FIX and FIX_H stopping criteria function display_emd_fixe(t,m,mp,r,envmin,envmax,envmoy,nbit,k,display_sifting) subplot(3,1,1) plot(t,mp);hold on; plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r'); title(['IMF ',int2str(k),'; iteration ',int2str(nbit),' before sifting']); set(gca,'XTick',[]) hold off subplot(3,1,2) plot(t,m) title(['IMF ',int2str(k),'; iteration ',int2str(nbit),' after sifting']); set(gca,'XTick',[]) subplot(3,1,3); plot(t,r-m) title('residue'); if display_sifting == 2 pause(0.01) else pause end end %--------------------------------------------------------------------------------------- % defines new extrema points to extend the interpolations at the edges of the % signal (mainly mirror symmetry) function [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,x,z,nbsym) lx = length(x); if (length(indmin) + length(indmax) < 3) error('not enough extrema') end % boundary conditions for interpolations : if indmax(1) < indmin(1) if x(1) > x(indmin(1)) lmax = fliplr(indmax(2:min(end,nbsym+1))); lmin = fliplr(indmin(1:min(end,nbsym))); lsym = indmax(1); else lmax = fliplr(indmax(1:min(end,nbsym))); lmin = [fliplr(indmin(1:min(end,nbsym-1))),1]; lsym = 1; end else if x(1) < x(indmax(1)) lmax = fliplr(indmax(1:min(end,nbsym))); lmin = fliplr(indmin(2:min(end,nbsym+1))); lsym = indmin(1); else lmax = [fliplr(indmax(1:min(end,nbsym-1))),1]; lmin = fliplr(indmin(1:min(end,nbsym))); lsym = 1; end end if indmax(end) < indmin(end) if x(end) < x(indmax(end)) rmax = fliplr(indmax(max(end-nbsym+1,1):end)); rmin = fliplr(indmin(max(end-nbsym,1):end-1)); rsym = indmin(end); else rmax = [lx,fliplr(indmax(max(end-nbsym+2,1):end))]; rmin = fliplr(indmin(max(end-nbsym+1,1):end)); rsym = lx; end else if x(end) > x(indmin(end)) rmax = fliplr(indmax(max(end-nbsym,1):end-1)); rmin = fliplr(indmin(max(end-nbsym+1,1):end)); rsym = indmax(end); else rmax = fliplr(indmax(max(end-nbsym+1,1):end)); rmin = [lx,fliplr(indmin(max(end-nbsym+2,1):end))]; rsym = lx; end end tlmin = 2*t(lsym)-t(lmin); tlmax = 2*t(lsym)-t(lmax); trmin = 2*t(rsym)-t(rmin); trmax = 2*t(rsym)-t(rmax); % in case symmetrized parts do not extend enough if tlmin(1) > t(1) || tlmax(1) > t(1) if lsym == indmax(1) lmax = fliplr(indmax(1:min(end,nbsym))); else lmin = fliplr(indmin(1:min(end,nbsym))); end if lsym == 1 error('bug') end lsym = 1; tlmin = 2*t(lsym)-t(lmin); tlmax = 2*t(lsym)-t(lmax); end if trmin(end) < t(lx) || trmax(end) < t(lx) if rsym == indmax(end) rmax = fliplr(indmax(max(end-nbsym+1,1):end)); else rmin = fliplr(indmin(max(end-nbsym+1,1):end)); end if rsym == lx error('bug') end rsym = lx; trmin = 2*t(rsym)-t(rmin); trmax = 2*t(rsym)-t(rmax); end zlmax =z(lmax); zlmin =z(lmin); zrmax =z(rmax); zrmin =z(rmin); tmin = [tlmin t(indmin) trmin]; tmax = [tlmax t(indmax) trmax]; zmin = [zlmin z(indmin) zrmin]; zmax = [zlmax z(indmax) zrmax]; end %--------------------------------------------------------------------------------------------------- %extracts the indices of extrema function [indmin, indmax, indzer] = extr(x,t) if(nargin==1) t=1:length(x); end m = length(x); if nargout > 2 x1=x(1:m-1); x2=x(2:m); indzer = find(x1.*x2<0); if any(x == 0) iz = find( x==0 ); indz = []; if any(diff(iz)==1) zer = x == 0; dz = diff([0 zer 0]); debz = find(dz == 1); finz = find(dz == -1)-1; indz = round((debz+finz)/2); else indz = iz; end indzer = sort([indzer indz]); end end d = diff(x); n = length(d); d1 = d(1:n-1); d2 = d(2:n); indmin = find(d1.*d2<0 & d1<0)+1; indmax = find(d1.*d2<0 & d1>0)+1; % when two or more successive points have the same value we consider only one extremum in the middle of the constant area % (only works if the signal is uniformly sampled) if any(d==0) imax = []; imin = []; bad = (d==0); dd = diff([0 bad 0]); debs = find(dd == 1); fins = find(dd == -1); if debs(1) == 1 if length(debs) > 1 debs = debs(2:end); fins = fins(2:end); else debs = []; fins = []; end end if length(debs) > 0 if fins(end) == m if length(debs) > 1 debs = debs(1:(end-1)); fins = fins(1:(end-1)); else debs = []; fins = []; end end end lc = length(debs); if lc > 0 for k = 1:lc if d(debs(k)-1) > 0 if d(fins(k)) < 0 imax = [imax round((fins(k)+debs(k))/2)]; end else if d(fins(k)) > 0 imin = [imin round((fins(k)+debs(k))/2)]; end end end end if length(imax) > 0 indmax = sort([indmax imax]); end if length(imin) > 0 indmin = sort([indmin imin]); end end end %--------------------------------------------------------------------------------------------------- function ort = io(x,imf) % ort = IO(x,imf) computes the index of orthogonality % % inputs : - x : analyzed signal % - imf : empirical mode decomposition n = size(imf,1); s = 0; for i = 1:n for j =1:n if i~=j s = s + abs(sum(imf(i,:).*conj(imf(j,:)))/sum(x.^2)); end end end ort = 0.5*s; end %--------------------------------------------------------------------------------------------------- function [x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,MAXMODES,INTERP,mask] = init(varargin) x = varargin{1}; if nargin == 2 if isstruct(varargin{2}) inopts = varargin{2}; else error('when using 2 arguments the first one is the analyzed signal X and the second one is a struct object describing the options') end elseif nargin > 2 try inopts = struct(varargin{2:end}); catch error('bad argument syntax') end end % default for stopping defstop = [0.05,0.5,0.05]; opt_fields = {'t','stop','display','maxiterations','fix','maxmodes','interp','fix_h','mask','ndirs','complex_version'}; defopts.stop = defstop; defopts.display = 0; defopts.t = 1:max(size(x)); defopts.maxiterations = 2000; defopts.fix = 0; defopts.maxmodes = 0; defopts.interp = 'spline'; defopts.fix_h = 0; defopts.mask = 0; defopts.ndirs = 4; defopts.complex_version = 2; opts = defopts; if(nargin==1) inopts = defopts; elseif nargin == 0 error('not enough arguments') end names = fieldnames(inopts); for nom = names' if ~any(strcmpi(char(nom), opt_fields)) error(['bad option field name: ',char(nom)]) end if ~isempty(eval(['inopts.',char(nom)])) % empty values are discarded eval(['opts.',lower(char(nom)),' = inopts.',char(nom),';']) end end t = opts.t; stop = opts.stop; display_sifting = opts.display; MAXITERATIONS = opts.maxiterations; FIXE = opts.fix; MAXMODES = opts.maxmodes; INTERP = opts.interp; FIXE_H = opts.fix_h; mask = opts.mask; ndirs = opts.ndirs; complex_version = opts.complex_version; if ~isvector(x) error('X must have only one row or one column') end if size(x,1) > 1 x = x.'; end if ~isvector(t) error('option field T must have only one row or one column') end if ~isreal(t) error('time instants T must be a real vector') end if size(t,1) > 1 t = t'; end if (length(t)~=length(x)) error('X and option field T must have the same length') end if ~isvector(stop) || length(stop) > 3 error('option field STOP must have only one row or one column of max three elements') end if ~all(isfinite(x)) error('data elements must be finite') end if size(stop,1) > 1 stop = stop'; end L = length(stop); if L < 3 stop(3)=defstop(3); end if L < 2 stop(2)=defstop(2); end if ~ischar(INTERP) || ~any(strcmpi(INTERP,{'linear','cubic','spline'})) error('INTERP field must be ''linear'', ''cubic'', ''pchip'' or ''spline''') end %special procedure when a masking signal is specified if any(mask) if ~isvector(mask) || length(mask) ~= length(x) error('masking signal must have the same dimension as the analyzed signal X') end if size(mask,1) > 1 mask = mask.'; end opts.mask = 0; imf1 = emd(x+mask,opts); imf2 = emd(x-mask,opts); if size(imf1,1) ~= size(imf2,1) warning('emd:warning',['the two sets of IMFs have different sizes: ',int2str(size(imf1,1)),' and ',int2str(size(imf2,1)),' IMFs.']) end S1 = size(imf1,1); S2 = size(imf2,1); if S1 ~= S2 if S1 < S2 tmp = imf1; imf1 = imf2; imf2 = tmp; end imf2(max(S1,S2),1) = 0; end imf = (imf1+imf2)/2; end sd = stop(1); sd2 = stop(2); tol = stop(3); lx = length(x); sdt = sd*ones(1,lx); sd2t = sd2*ones(1,lx); if FIXE MAXITERATIONS = FIXE; if FIXE_H error('cannot use both ''FIX'' and ''FIX_H'' modes') end end MODE_COMPLEX = ~isreal(x)*complex_version; if MODE_COMPLEX && complex_version ~= 1 && complex_version ~= 2 error('COMPLEX_VERSION parameter must equal 1 or 2') end % number of extrema and zero-crossings in residual ner = lx; nzr = lx; r = x; if ~any(mask) % if a masking signal is specified "imf" already exists at this stage imf = []; end k = 1; % iterations counter for extraction of 1 mode nbit=0; % total iterations counter NbIt=0; end %---------------------------------------------------------------------------------------------------
关于EMD,有对应的工具箱。VMD也有扩展的二维分解,此处不再展开。
三、一种权衡的小trick
关于瞬时频率的原理以及代码,参考另一篇博文。
比较来看:
- EMD分解的IMF分量个数不能人为设定,而VMD(Variational Mode Decomposition)则可以;
- 但VMD也有弊端:分解过多,则信号断断续续,没有多少规律可言。
能不能取长补短呢?
自己之前做了一个小code,放在这里,供大家交流使用(此理论为自己首创,版权所有,拿去也不介意!(●'◡'●))。
给定一个信号,下图是EMD分解结果,分解出了5个分量。
再来一个VMD(设定分量个数为3)的分解结果:
比较两个结果,可以发现:VMD的低频分量,更容易表达出经济波动的大趋势,而EMD则不易观察该特性。
或许有人会说:几个EMD分量叠加一下,也会有该效果,但如果不观察分解的数据,如何确定几个分量相加呢?更何况EMD总的IMF个数也是未知!
VMD的优势观察到了,但如何确定分量个数呢?
再来一个效果图:
这里分析了VMD分量从1~9,9种情况下某特征的曲线,可以观察到:个数增加到一定数量,曲线有了明显的下弯曲现象(该特性容易借助曲率,进行量化分析,不再展开),这个临界的个数就是分解的合适数量,此处:K=3,因为到4就有了明显的下弯曲。
可见通过该特征,即可理论上得出最优K。下面讲一讲这个某特征为何物?
上一段代码:
for st=1:9 K=st+1; [u, u_hat, omega] = VMD(data, length(data), 0, K, 0, 1, 1e-5); u=flipud(u); resf=zeros(1,K); for i=1:K testdata=u(i,:); hilbert(testdata'); z=hilbert(testdata'); % 希尔伯特变换 a=abs(z); % 包络线 fnor=instfreq(z); % 瞬时频率 resf(i)=mean(fnor); end subplot(3,3,st) plot(resf,'k');title(['个数为',num2str(st)]);grid on; end
没错,该特征就是:分量瞬时频率的均值。如果分解个数过大,则分量会出现断断絮絮地现象,特别是在高频,这样一来,即使是高频,平均瞬时频率反而低一些,这也是下弯曲的根本原因。
这个小trick就介绍到这里。
四、问题补充
HHT算法中,有两处存在端点效应,VMD是否也有呢?这一点没有再去验证。另外,关于Hilbert的端点效应,在另一篇博文已经给出。
参考:
宋知用:《MATLAB在语音信号分析和合成中的应用》
了凡春秋: http://blog.sina.com.cn/s/blog_6163bdeb0102e2cd.html
VMD-code:https://cn.mathworks.com/matlabcentral/fileexchange/44765-variational-mode-decomposition
EMD原理图:http://blog.sciencenet.cn/blog-244606-256958.html