谷歌BERT预训练源码解析(三):训练过程

目录

  • 前言
  • 源码解析
    • 主函数
    • 自定义模型
    • 遮蔽词预测
    • 下一句预测
    • 规范化数据集

前言

本部分介绍BERT训练过程,BERT模型训练过程是在自己的TPU上进行的,这部分我没做过研究所以不做深入探讨。BERT针对两个任务同时训练。1.下一句预测。2.遮蔽词识别
下面介绍BERT的预训练模型run_pretraining.py是怎么训练的。

源码解析

主函数

训练过程主要用了estimator调度器。这个调度器支持自定义训练过程,将训练集传入之后自动训练。详情见注释

def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)

  if not FLAGS.do_train and not FLAGS.do_eval:
    raise ValueError("At least one of `do_train` or `do_eval` must be True.")

  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

  tf.gfile.MakeDirs(FLAGS.output_dir)

  input_files = []
  for input_pattern in FLAGS.input_file.split(","):
    input_files.extend(tf.gfile.Glob(input_pattern))

  tf.logging.info("*** Input Files ***")
  for input_file in input_files:
    tf.logging.info("  %s" % input_file)

  tpu_cluster_resolver = None
  if FLAGS.use_tpu and FLAGS.tpu_name:
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

  is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
  run_config = tf.contrib.tpu.RunConfig(        #训练参数
      cluster=tpu_cluster_resolver,
      master=FLAGS.master,
      model_dir=FLAGS.output_dir,
      save_checkpoints_steps=FLAGS.save_checkpoints_steps,
      tpu_config=tf.contrib.tpu.TPUConfig(
          iterations_per_loop=FLAGS.iterations_per_loop,
          num_shards=FLAGS.num_tpu_cores,
          per_host_input_for_training=is_per_host))

  model_fn = model_fn_builder(       #自定义模型,用于estimator训练
      bert_config=bert_config,
      init_checkpoint=FLAGS.init_checkpoint,
      learning_rate=FLAGS.learning_rate,
      num_train_steps=FLAGS.num_train_steps,
      num_warmup_steps=FLAGS.num_warmup_steps,
      use_tpu=FLAGS.use_tpu,
      use_one_hot_embeddings=FLAGS.use_tpu)

  # If TPU is not available, this will fall back to normal Estimator on CPU
  # or GPU.
  estimator = tf.contrib.tpu.TPUEstimator(    #创建TPUEstimator
      use_tpu=FLAGS.use_tpu,
      model_fn=model_fn,
      config=run_config,
      train_batch_size=FLAGS.train_batch_size,
      eval_batch_size=FLAGS.eval_batch_size)

  if FLAGS.do_train:     #训练过程
    tf.logging.info("***** Running training *****")
    tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
    train_input_fn = input_fn_builder(     #创建输入训练集
        input_files=input_files,
        max_seq_length=FLAGS.max_seq_length,
        max_predictions_per_seq=FLAGS.max_predictions_per_seq,
        is_training=True)
    estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)

  if FLAGS.do_eval:    #验证过程
    tf.logging.info("***** Running evaluation *****")
    tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

    eval_input_fn = input_fn_builder(    #创建验证集
        input_files=input_files,
        max_seq_length=FLAGS.max_seq_length,
        max_predictions_per_seq=FLAGS.max_predictions_per_seq,
        is_training=False)

    result = estimator.evaluate(
        input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)

    output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
    with tf.gfile.GFile(output_eval_file, "w") as writer:
      tf.logging.info("***** Eval results *****")
      for key in sorted(result.keys()):
        tf.logging.info("  %s = %s", key, str(result[key]))
        writer.write("%s = %s\n" % (key, str(result[key])))

自定义模型

首先获取数据内容,传入到上一篇定义的模型中。对下一句预测任务取出模型的[CLS]结果。对遮蔽词预测任务取出模型的最后结果。然后分别计算loss值,最后将loss值相加。详情见注释

def model_fn_builder(bert_config, init_checkpoint, learning_rate,
                    num_train_steps, num_warmup_steps, use_tpu,
                    use_one_hot_embeddings):
 """Returns `model_fn` closure for TPUEstimator."""

 def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
   """The `model_fn` for TPUEstimator."""

   tf.logging.info("*** Features ***")
   for name in sorted(features.keys()):
     tf.logging.info("  name = %s, shape = %s" % (name, features[name].shape))
   #获取数据内容
   input_ids = features["input_ids"]
   input_mask = features["input_mask"]
   segment_ids = features["segment_ids"]
   masked_lm_positions = features["masked_lm_positions"]
   masked_lm_ids = features["masked_lm_ids"]
   masked_lm_weights = features["masked_lm_weights"]
   next_sentence_labels = features["next_sentence_labels"]

   is_training = (mode == tf.estimator.ModeKeys.TRAIN)
  传入到Bert模型中。
   model = modeling.BertModel(
       config=bert_config,
       is_training=is_training,
       input_ids=input_ids,
       input_mask=input_mask,
       token_type_ids=segment_ids,
       use_one_hot_embeddings=use_one_hot_embeddings)
   #遮蔽预测的batch_loss,平均loss,预测概率矩阵
   (masked_lm_loss,
    masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
        bert_config, model.get_sequence_output(), model.get_embedding_table(),
        masked_lm_positions, masked_lm_ids, masked_lm_weights)
  #下一句预测的batch_loss,平均loss,预测概率矩阵
   (next_sentence_loss, next_sentence_example_loss,
    next_sentence_log_probs) = get_next_sentence_output(
        bert_config, model.get_pooled_output(), next_sentence_labels)
  #loss相加
   total_loss = masked_lm_loss + next_sentence_loss
  #获取所有变量
   tvars = tf.trainable_variables()

   initialized_variable_names = {}
   scaffold_fn = None
   #如果有之前保存的模型
   if init_checkpoint:
     (assignment_map, initialized_variable_names
     ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
     if use_tpu:

       def tpu_scaffold():
         tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
         return tf.train.Scaffold()

       scaffold_fn = tpu_scaffold
     else:
       tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

   tf.logging.info("**** Trainable Variables ****")
   #如果有之前保存的模型
   for var in tvars:
     init_string = ""
     if var.name in initialized_variable_names:
       init_string = ", *INIT_FROM_CKPT*"
     tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                     init_string)
 
   output_spec = None
   if mode == tf.estimator.ModeKeys.TRAIN:
     train_op = optimization.create_optimizer(    #自定义好的优化器
         total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

     output_spec = tf.contrib.tpu.TPUEstimatorSpec(  #Estimator要求返回一个EstimatorSpec对象
         mode=mode,
         loss=total_loss,
         train_op=train_op,
         scaffold_fn=scaffold_fn)
    #验证过程
   elif mode == tf.estimator.ModeKeys.EVAL:

     def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
                   masked_lm_weights, next_sentence_example_loss,
                   next_sentence_log_probs, next_sentence_labels):
       """Computes the loss and accuracy of the model."""
       masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
                                        [-1, masked_lm_log_probs.shape[-1]])   #概率矩阵转成[batch_size*max_pred_pre_seq,vocab_size]
       masked_lm_predictions = tf.argmax(
           masked_lm_log_probs, axis=-1, output_type=tf.int32)  #取最大值位置为输出
       masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])  #每句loss列表 [batch_size*max_pred_per_seq]
       masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
       masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
       masked_lm_accuracy = tf.metrics.accuracy(   #计算准确率
           labels=masked_lm_ids,
           predictions=masked_lm_predictions,
           weights=masked_lm_weights)
       masked_lm_mean_loss = tf.metrics.mean(  #计算平均loss
           values=masked_lm_example_loss, weights=masked_lm_weights)

       next_sentence_log_probs = tf.reshape(
           next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
       next_sentence_predictions = tf.argmax(   #获取最大位置为输出
           next_sentence_log_probs, axis=-1, output_type=tf.int32)
       next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
       next_sentence_accuracy = tf.metrics.accuracy(   #计算准确率
           labels=next_sentence_labels, predictions=next_sentence_predictions)
       next_sentence_mean_loss = tf.metrics.mean(   计算平均loss
           values=next_sentence_example_loss)

       return {
           "masked_lm_accuracy": masked_lm_accuracy,
           "masked_lm_loss": masked_lm_mean_loss,
           "next_sentence_accuracy": next_sentence_accuracy,
           "next_sentence_loss": next_sentence_mean_loss,
       }

     eval_metrics = (metric_fn, [
         masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
         masked_lm_weights, next_sentence_example_loss,
         next_sentence_log_probs, next_sentence_labels
     ])
     output_spec = tf.contrib.tpu.TPUEstimatorSpec( #Estimator要求返回一个EstimatorSpec对象
         mode=mode,
         loss=total_loss,
         eval_metrics=eval_metrics,
         scaffold_fn=scaffold_fn)
   else:
     raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))

   return output_spec

 return model_fn

遮蔽词预测

输入BERT模型的最后一层encoder,输出遮蔽词预测任务的loss和概率矩阵。详情见注释

def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
                         label_ids, label_weights):
                         #这里的input_tensor是模型中传回的最后一层结果 [batch_size,seq_length,hidden_size]。
                         #output_weights是词向量表 [vocab_size,embedding_size]
  """Get loss and log probs for the masked LM."""
  #获取positions位置的所有encoder(即要预测的那些位置的encoder)
  input_tensor = gather_indexes(input_tensor, positions)   #[batch_size*max_pred_pre_seq,hidden_size]

  with tf.variable_scope("cls/predictions"):
    # We apply one more non-linear transformation before the output layer.
    # This matrix is not used after pre-training.
    with tf.variable_scope("transform"):
      input_tensor = tf.layers.dense(    #传入一个全连接层 输出shape [batch_size*max_pred_pre_seq,hidden_size]
          input_tensor,
          units=bert_config.hidden_size,
          activation=modeling.get_activation(bert_config.hidden_act),
          kernel_initializer=modeling.create_initializer(
              bert_config.initializer_range))
      input_tensor = modeling.layer_norm(input_tensor) 

    # The output weights are the same as the input embeddings, but there is
    # an output-only bias for each token.
    output_bias = tf.get_variable(
        "output_bias",
        shape=[bert_config.vocab_size],
        initializer=tf.zeros_initializer())
    logits = tf.matmul(input_tensor, output_weights, transpose_b=True)  #[batch_size*max_pred_pre_seq,vocab_size]
    logits = tf.nn.bias_add(logits, output_bias)  #加bias
    log_probs = tf.nn.log_softmax(logits, axis=-1)   #[batch_size*max_pred_pre_seq,vocab_size]

    label_ids = tf.reshape(label_ids, [-1])    #[batch_size*max_pred_per_seq]
    label_weights = tf.reshape(label_weights, [-1])

    one_hot_labels = tf.one_hot(        #[batch_size*max_pred_per_seq,vocab_size]
        label_ids, depth=bert_config.vocab_size, dtype=tf.float32)   #label id转one hot

    # The `positions` tensor might be zero-padded (if the sequence is too
    # short to have the maximum number of predictions). The `label_weights`
    # tensor has a value of 1.0 for every real prediction and 0.0 for the
    # padding predictions.
    per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])  #[batch_size*max_pred_per_seq] 
    numerator = tf.reduce_sum(label_weights * per_example_loss) #[1] 一个batch的loss
    denominator = tf.reduce_sum(label_weights) + 1e-5
    loss = numerator / denominator    #平均loss

  return (loss, per_example_loss, log_probs)

下一句预测

输入BERT模型CLS的encoder,输出下一句预测任务的loss和概率矩阵,详情见注释

def get_next_sentence_output(bert_config, input_tensor, labels):
#input_tensor shape  [batch_size,hidden_size]
  """Get loss and log probs for the next sentence prediction."""

  # Simple binary classification. Note that 0 is "next sentence" and 1 is
  # "random sentence". This weight matrix is not used after pre-training.
  with tf.variable_scope("cls/seq_relationship"):
    output_weights = tf.get_variable(
        "output_weights",
        shape=[2, bert_config.hidden_size],
        initializer=modeling.create_initializer(bert_config.initializer_range))
    output_bias = tf.get_variable(
        "output_bias", shape=[2], initializer=tf.zeros_initializer())   #[batch_size,hidden_size]
 
    logits = tf.matmul(input_tensor, output_weights, transpose_b=True)  #[batch_size,2]
    logits = tf.nn.bias_add(logits, output_bias)   #[batch_size,2]
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    labels = tf.reshape(labels, [-1])
    one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)   #[batch_size,2]
    per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)  #[batch_size]
    loss = tf.reduce_mean(per_example_loss)    #[1]
    return (loss, per_example_loss, log_probs)

规范化数据集

Estimator要求模型的输入为特定格式(from_tensor_slices),所以要对数据进行类封装

def input_fn_builder(input_files,
                  max_seq_length,
                  max_predictions_per_seq,
                  is_training,
                  num_cpu_threads=4):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""

def input_fn(params):
 """The actual input function."""
 batch_size = params["batch_size"]

 name_to_features = {
     "input_ids":
         tf.FixedLenFeature([max_seq_length], tf.int64),
     "input_mask":
         tf.FixedLenFeature([max_seq_length], tf.int64),
     "segment_ids":
         tf.FixedLenFeature([max_seq_length], tf.int64),
     "masked_lm_positions":
         tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
     "masked_lm_ids":
         tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
     "masked_lm_weights":
         tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
     "next_sentence_labels":
         tf.FixedLenFeature([1], tf.int64),
 }

 # For training, we want a lot of parallel reading and shuffling.
 # For eval, we want no shuffling and parallel reading doesn't matter.
 if is_training:
   d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
   d = d.repeat()    #重复
   d = d.shuffle(buffer_size=len(input_files))    #打乱

   # `cycle_length` is the number of parallel files that get read.
   cycle_length = min(num_cpu_threads, len(input_files))

   # `sloppy` mode means that the interleaving is not exact. This adds
   # even more randomness to the training pipeline.
   d = d.apply(
       tf.contrib.data.parallel_interleave(  #生成嵌套数据集,并且输出其元素隔行交错
           tf.data.TFRecordDataset, 
           sloppy=is_training,
           cycle_length=cycle_length))
   d = d.shuffle(buffer_size=100)
 else:
   d = tf.data.TFRecordDataset(input_files)
   # Since we evaluate for a fixed number of steps we don't want to encounter
   # out-of-range exceptions.
   d = d.repeat()

 # We must `drop_remainder` on training because the TPU requires fixed
 # size dimensions. For eval, we assume we are evaluating on the CPU or GPU
 # and we *don't* want to drop the remainder, otherwise we wont cover
 # every sample.
 d = d.apply(
     tf.contrib.data.map_and_batch(   #结构转换
         lambda record: _decode_record(record, name_to_features),
         batch_size=batch_size,
         num_parallel_batches=num_cpu_threads,
         drop_remainder=True))
 return d

return input_fn

你可能感兴趣的:(BERT)