图像二值化阀值(Kirsch算子)

图像二值化阀值Kirsch算子  

Kirsch算子实现起来相对来说稍微麻烦一些,它采用8个模板对图像上的每一个像素点进行卷积求导数,这8个模板代表8个方向,对图像上的8个特定边缘方向作出最大响应,运算中取最大值作为图像的边缘输出(上述算法中用到的8个模板在下面的实现代码中给出)。为了便于读者理解该算法的实现,这里我们给出实现该算法的函数代码,可以稍加改动应用到自己的项目中去。

BOOL Kirsch(BYTE *pData,int Width,int Height)
{//定义实现Kirsch算法的8个模板;
int i,j,s,t,k,max,sum[8];
static a[3][3]={{+5,+5,+5},{-3,0,-3},{-3,-3,-3}};
static a1[3][3]={{-3,+5,+5},{-3,0,+5},{-3,-3,-3}};
static a2[3][3]={{-3,-3,+5},{-3,0,+5},{-3,-3,+5}};
static a3[3][3]={{-3,-3,-3},{-3,0,+5},{-3,+5,+5}};
static a4[3][3]={{-3,-3,-3},{-3,0,-3},{+5,+5,+5}};
static a5[3][3]={{-3,-3,-3},{+5,0,-3},{+5,+5,-3}};
static a6[3][3]={{+5,-3,-3},{+5,0,-3},{+5,-3,-3}};
static a7[3][3]={{+5,+5,-3},{+5,0,-3},{-3,-3,-3}};
BYTE *pData1;
if(pData==NULL)
{
AfxMessageBox("图像数据为空,请读取图像数据!");
return FALSE;
}
pData1=(BYTE*)new char[Width*Height];
if(pData1==NULL)
{
AfxMessageBox("图像缓冲数据区申请失败,请重新申请图像数据缓冲区!");
return FALSE ;
}
memcpy(pData1,pData, Width*8*Height);
//kirsch算子处理,对每一像素点求取八个方向的导数;;
for(i=1;ifor(j=1;j{
sum[1]=sum[2]=sum[3]=sum[4]=sum[5]=sum[6]=sum[7]=sum[8]=0;
for(t=-1;t<2;t++)
{
for(s=-1;s<2;s++)
{ sum[1]+=*(pData+WIDTHBYTES(Width*8)*(i+t)+j+s)*a[1+t][1+s];
sum[2]+=*(pData+WIDTHBYTES(Width*8)*(i+t)+j+s)*a1[1+t][1+s]; sum[3]+=*(pData+WIDTHBYTES(Width*8)*(i+t)+j+s)*a2[1+t][1+s]; sum[4]+=*(pData+WIDTHBYTES(Width*8)*(i+t)+j+s)*a3[1+t][1+s]; sum[5]+=*(pData+WIDTHBYTES(Width*8)*(i+t)+j+s)*a4[1+t][1+s]; sum[6]+=*(pData+WIDTHBYTES(Width*8)*(i+t)+j+s)*a5[1+t][1+s]; sum[7]+=*(pData+WIDTHBYTES(Width*8)*(i+t)+j+s)*a6[1+t][1+s]; sum[8]+=*(pData+WIDTHBYTES(Width*8)*(i+t)+j+s)*a7[1+t][1+s];
}
}
//取最大方向的导数;
for(k=0;k<8;k++)
{
max=0;
if(maxmax=sum[k];
}
if(max<0)
max=0;
if(max>255)
max=255;
*(pData1+ Width*8*i+j)=max;
}
memcpy(pData,pData1, Width*8*Height);
delete pData1;
return TRUE;
}

你可能感兴趣的:(图像模式识别)