- 动态蛇形卷积(DySnakeConv)在YOLOv8检测头中的应用与优化-分割性能的提升【YOLOv8】
步入烟尘
YOLO动态蛇形卷积DySnakeConv
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录动态蛇形卷积(DySnakeConv)在YOLOv8检测头中的应用与优化-分割性能的提升【YOLOv
- webpack性能优化策略
雅望天堂i
webpack前端node.js
1.代码分割(CodeSplitting)通过代码分割,可以将代码拆分成多个较小的文件,实现按需加载,减少首屏加载时间。使用SplitChunksPlugin将公共代码提取到单独的chunk中,避免重复打包。config.optimization.splitChunks({chunks:'all',cacheGroups:{//第三方组件libs:{name:'chunk-libs',test:/
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- 刷题计划day29 动规01背包(一)【01背包】【分割等和子集】【最后一块石头的重量 II】
哈哈哈的懒羊羊
算法java数据结构leetcode动态规划背包问题蓝桥杯
⚡刷题计划day29动规01背包(一)开始,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力~目录背包问题前言01背包二维数组dp[i][j]关于是否放物品:关于二维dp遍历顺序:一维数组dp(滚动数组)关于一维dp遍历顺序:题目一:416.分割等和子集题目二:1049.最后一块石头的重量II背包问题前言对于面试的话,其实掌握01背包和完全背包,就够用了,最多可以再来一个多重背
- 同步&异步日志系统-设计模式
2401_82609762
设计模式
六大原则单⼀职责原则(SingleResponsibilityPrinciple)类的职责应该单⼀,⼀个⽅法只做⼀件事。职责划分清晰了,每次改动到最⼩单位的⽅法或类。使⽤建议:两个完全不⼀样的功能不应该放⼀个类中,⼀个类中应该是⼀组相关性很⾼的函数、数据的封装⽤例:⽹络聊天:⽹络通信&聊天,应该分割成为⽹络通信类&聊天类开闭原则(OpenClosedPrinciple)对扩展开放,对修改封闭使⽤建
- 图像识别技术与应用第三课
哈哈~156
scikit-learn
一、感知机感知机由美国学者FrankRosenblatt在1957年提出,它根据输入x、权重w和偏差b进行输出,输出结果是二分类(0或1),这和输出实数的回归以及输出概率用于多分类的Softmax不同。像与门、与非门、或门都能通过设定合适的权重和偏差实现。w称为权重:控制输入信号的重要性的参数b称为偏置:偏置是调整神经元被激活的容易程度参数感知机的局限性:感知机的局限性就是只能表示由一条直线分割的
- MONAI 1.4新版本发布,抢先体验MAISI扩散模型以及VISTA交互式分割模型
Tina姐
Monai人工智能
MONAI1.4新版本发布,抢先体验MAISI扩散模型以及VISTA交互式分割模型上周,MONAI发布了备受期待的1.4版本,这是时隔一年的重大更新。新版本带来了一系列令人兴奋的新功能和改进,让我们一起来看看:MAISI:这是一个最先进的3D潜在扩散模型(3DLatentDiffusionModel),专为生成高质量的合成CT图像而设计,无论是否带有解剖标注。MAISI在数据增强和创建逼真的医学成
- TotalSegmentator:一站式医学影像分割工具
柯江同
TotalSegmentator:一站式医学影像分割工具TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目基础介绍及编程语言TotalSegmentator是一个强
- ️ 总览:TotalSegmentator - 医学影像分割的革新者
金斐茉
️总览:TotalSegmentator-医学影像分割的革新者TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator在医学图像处理领域中,精确且高效的自动分割工具对于研究和
- 探索TotalSegmentator:一款强大的全场景图像分割工具
计蕴斯Lowell
探索TotalSegmentator:一款强大的全场景图像分割工具项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目简介是一个开源的、基于深度学习的全场景图像分割框架。它由开发者Wasserth创建,旨在为医学影像分析、自动驾驶、遥感图像处理等多个领域提供高效且准确的像素级分类能力。该项目的亮点在于其模型的通用性和易用性,能够处理多种
- 2.19 图像技术识别与应用
不要不开心了
java-rabbitmqsentinelhttpxnumpydash
本节课介绍了多层感知机(MLP)及其在图像识别技术中的应用。以下是主要内容总结:1.感知机:-由FrankRosenblatt于1957年提出。-输入为x,权重为w,偏置为b,输出为二分类(0或1)。-可用于实现简单逻辑电路(如与门、与非门、或门)。-局限性:只能表示由一条直线分割的空间,无法处理线性不可分问题(如异或门)。2.多层感知机(MLP):-通过引入隐藏层和激活函数来解决感知机的局限性。
- leetcode_132. 分割回文串 II
二次元憨批
算法leetcodec++
给定一个字符串s,将s分割成一些子串,使每个子串都是回文串。返回符合要求的最少分割次数。示例:输入:“aab”输出:1解释:进行一次分割就可将s分割成[“aa”,“b”]这样两个回文子串。解析:本题与上一题不同,要求返回最少分割次数。看似更加简单,实则相反。如果用上一题的基础来看,对上一题的结果即所有的分割可能进行统计即可获得最少分割次数。但是毫无疑问的超时了。本题仅要求返回次数,因此不需要进行回
- hive—常用的函数整理
风子~
hivehadoop数据仓库
1、size(split(...))函数用于计算分割后字符串数组的长度1)实例:由客户编号列表计算客户编号个数--数据准备withtmp_test01as(select'tag074445270'tag_id,'202501'busi_mon,'012399931003,012399931000'index_valunionallselect'tag074445271'tag_id,'202501
- 机器学习:决策树
小源学AI
人工智能机器学习决策树人工智能
1.初步概念决策树是一种基于分裂特征的机器学习方法,用于分类和回归任务。它通过将数据按特征值进行分割,最终做出预测。与线性模型不同,决策树能够自动识别重要的特征,并根据数据情况生成复杂的决策规则。2.决策树的核心思想决策树的核心思想在于选择一个特征作为分裂条件,将当前的数据划分为两个子节点,并重复这个过程直到达到停止条件。分裂条件的选择通常基于信息增益(香农信息量)或基尼不等式,以确保每次分裂都能
- 机器学习:支持向量机
小源学AI
人工智能支持向量机机器学习算法
基本概念1.什么是支持向量机支持向量机是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面对样本进行分割,分割的原则是间隔最大化(也就是数据集的边缘点到分界点的距离d最大)最终转化成一个凸二次规划问题来求解。通常的SVM用于二元分类问题,对于多元分类问题可将其分解为多个二元分类问题,在进行分类。2.最优分类边界什么才是最优分类边界?什么条
- EMC Symmetrix V-Max:革命者?集大成者?
weixin_34067980
前端后端运维ViewUI
横向,还是纵向?两个月前,EMC公司存储部门总裁唐纳特利(DavidA.Donatelli)访华的时候,笔者问了这样一个问题:中高端存储市场上,已经出现了以IBMXIV和3PARInServT系列为代表的横向扩展(scaleout)系统,而SymmetrixDMX-4仍属于纵向扩展(scale-up)系统,(不可分割的)单一系统能支持的驱动器数量多达2400个。传说中的DMX-5,还会向这个方向发
- K-means聚类:解锁数据隐藏结构的钥匙
小村学长毕业设计
kmeans聚类机器学习
K-means聚类:解锁数据隐藏结构的钥匙在机器学习的广阔领域中,无监督学习以其独特的魅力吸引了众多研究者和实践者。其中,K-means聚类作为一种经典且实用的无监督学习算法,以其简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。本文将深入探讨K-means聚类的工作原理、应用实例及其在这些领域中的具体应用,旨在揭示其如何智能划分数据,解锁隐藏结构,为相关领域提供精准导航。一、K-me
- 地平线x5下运行yolo11s-seg模型
zgrobot
机器人yolo11实例分割地平线x5
经过地瓜机器人工作人员(感谢吴超同学)的及时技术支持,整体比较顺利的跑起来了yolo11s-seg分割模型。将一些经验记录下来:首先下载使用docker镜像:https://developer.d-robotics.cc/forumDetail/228559182180396619https://developer.d-robotics.cc/forumDetail/251934919646096
- 【YOLOv11改进- 主干网络】YOLOv11+CSWinTransformer: 交叉窗口注意力Transformer助力YOLOv11有效涨点;
算法conv_er
YOLOv11目标检测改进YOLO目标跟踪人工智能目标检测深度学习transformer计算机视觉
YOLOV11目标检测改进实例与创新改进专栏专栏地址:YOLOv11目标检测改进专栏,包括backbone、neck、loss、分配策略、组合改进、原创改进等本文介绍发paper,毕业皆可使用。本文给大家带来的改进内容是在YOLOv11中更换主干网络为CSWinTransformer,助力YOLOv11有效涨点,通过创新性地开发了十字形窗口自注意力机制。该机制通过将输入特征分割为等宽条纹,在水平与
- 深度学习下的图像分割
人工智能大讲堂
深度学习人工智能
在之前写的文章[图像分割演进之路]中,讲述了图像分割的发展历程,从传统图像分割算法到人工智能,分割算法百花齐放,但最终的佼佼者当属人工智能,但即使是人工智能领域,图像分割也五花八门,今天就让我们看几种基于学习的图像分割方法。基于学习的图像分割算法主要依赖于深度神经网络,经典的深度神经网络分为如下几种:2.1卷积神经网络CNN:卷积神经网络是图像处理领域应用最为广泛的网络,其权值共享,局部连接等特性
- redis结合lua脚本解决多线程并发安全问题
练川
redisluaredis
文章目录前言原子性单线程模型总结前言我们知道,多线程并发访问共享数据的时候,可能会造成并发安全问题,这是由于并发时多个线程相互穿插造成的问题;可以通过加锁,使得多个线程串行执行解决。当访问的是redis中的共享数据时,除了可以通过加锁解决,还可以使用lua脚本解决。本文针对redis结合lua脚本解决多线程并发安全问题,记录下个人的理解。原子性首先何为原子性?原子性是指操作不可分割,要么全部执行成
- BGP RR路由反射器
VVVVWeiYee
路由技术网络运维信息与通信
解决问题由于BGP水平分割的原因,即从IBGP邻居学到的路由不会通告给其他IBGP邻居,这就要求IGP内的设备都需要两两设备都必须运行并建立IBGP邻居,这不仅不利于网络的部署还增加了配置的复杂度,对于网络管理和设备来说都是一件坏事,为优化设备交流信息量,因此有了联邦和RR,但两者相较而言RR在简化信息的同时还简化了配置,比起联邦灵活性更高工作原理与BGPRR反射器相关的路径属性有Cluster-
- open3d python 分割多个平面
黄晓魚
halcon3dPCL点云处理深度神经网络点云处理PCL库Open3D库Point++模型使用平面算法open3dpython
测试效果废话在Open3D中,detect_planar_patches方法用于从点云数据中检测平面区域(或称为平面补丁)。这个方法通过分析点云中各点之间的法线向量和方向性来识别具有相似法线向量的点群,从而识别出潜在的平面区域。下面是对你给出的代码行中各个参数的解释:normal_variance_threshold_deg:法线向量方差阈值(以度为单位)。这个参数设定了允许的点云中法线向量方向变
- Open3D(C++) 可视化绘制平面模型
后端架构魔术师
c++平面开发语言编程
Open3D(C++)可视化绘制平面模型Open3D是一个现代化的3D图像处理引擎,它包含很多常用的3D操作,如点云分割、重构、配准等。其中,在可视化方面Open3D也提供了一系列方便易用的函数和接口。在本篇文章中,我们将介绍如何使用Open3D绘制一个简单的平面模型并进行可视化展示。下面是完整的源代码:#include#includeintmain(){//创建平面顶点std::vectorve
- [C#]C#使用yolov8的目标检测tensorrt模型+bytetrack实现目标追踪
FL1623863129
深度学习c#YOLO目标检测
【测试通过环境】win10x64vs2019cuda11.7+cudnn8.8.0TensorRT-8.6.1.6opencvsharp==4.9.0.NETFramework4.7.2NVIDIAGeForceRTX2070Super版本和上述环境版本不一样的需要重新编译TensorRtExtern.dll,TensorRtExtern源码地址:TensorRT-CSharp-API/src/T
- 基于图像处理的裂缝宽度检测系统-matlab
人工智能专属驿站
计算机视觉图像处理人工智能
图像处理技术广泛地应用于桥梁、房屋、道路等工程施工中出现的表面裂缝,利用数字图像处理技术来测量结构物表面裂缝宽度是一种无损检测方法.基于图像处理的裂缝宽度检测系统需采用的图像处理算法有:(1)读取裂缝图像;(2)图像转化为灰度图像;(3)图像的增强;(4)平滑滤波;(5)阈值分割;(6)形态学去噪;(7)边缘检测(Canny算子);(8)边缘坐标点的提取;结果见:源程序见:基于图像处理的裂缝宽度检
- MySQL事务的四大特性ACID
卡莫纳王牌枪神
mysql数据库
目录一、原子性(Atomicity)二、一致性(Consistency)三、隔离性(Isolation)四、持久性(Durability)MySQL事务的四大特性ACID,即原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability),是确保数据准确性和可靠性的关键所在。一、原子性(Atomicity)原子性是指事务是一个不可分割的最
- halcon的Blob分析方法
斯人已去忆犹在
计算机视觉人工智能图像处理
阈值分割法图像分割常用方法就是阈值分割法,它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤。阈值分割法是一种传统的最常用的图像分割方法,特别适用于目标和背景占据不同灰度级范围的图像。阈值分割是一种按图像像素灰度幅度进行分割的方法,把图像的灰度分成不同的等级,然后用设置灰度门限(阈值)的方法确定有意义的区域或要分割物体的边界。阈值分割的优点是计算简单、运算效率较高、速度快。阈值分割的几个难
- Netty如何优雅地解决TCP粘包、拆包问题
星辰@Sea
系统架构Javatcp/ip网络网络协议Netty
引言在TCP/IP协议族中,TCP(传输控制协议)是一个面向连接的、可靠的、基于字节流的传输层协议。TCP协议确保了数据能够可靠地从一个端点传输到另一个端点,但它并没有提供消息边界的概念。这意味着,当数据被发送时,可能会出现“粘包”(数据包被合并)或“拆包”(数据包被分割)的问题。这对开发人员来说是一个挑战,因为如果不正确处理这些问题,可能导致应用程序的逻辑错误或性能问题。在本文中,我们将深入探讨
- 【Py/Java/C++/C/JS/Go六种语言OD独家2024E卷真题】20天拿下华为OD笔试之【前缀和】2024E-分割数组的最大差值【欧弟算法】全网注释最详细分类最全的华为OD真题题解
闭着眼睛学算法
最新华为OD真题#前缀和javac++c语言华为odjavascript算法python
可上欧弟OJ系统练习华子OD、大厂真题绿色聊天软件戳oj1441了解算法冲刺训练(备注【CSDN】否则不通过)文章目录相关推荐阅读题目描述与示例题目描述输入描述输出描述示例输入输出说明解题思路代码pythonjavaC++CNodejavaScriptGo时空复杂度华为OD算法/大厂面试高频题算法练习冲刺训练相关推荐阅读【华为OD机考】2024E+D卷最全真题【完全原创题解|详细考点分类|不断更新
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc