- 深入解析 React Diff 算法:原理、优化与实践
赵大仁
前端技术jsreact.js前端前端框架
深入解析ReactDiff算法:原理、优化与实践1.引言React作为前端领域的标杆框架,采用虚拟DOM(VirtualDOM)来提升UI更新性能。React的Diff算法(Reconciliation)是虚拟DOM运行机制的核心,它决定了如何高效地对比新旧DOM并执行最少的操作来更新UI。本篇文章将深入探讨ReactDiff算法的原理、优化策略,并通过生动的示例解析其工作方式,让你能够更直观地理
- Different number of columns
sunyaox
flinkflink异常
org.apache.flink.client.program.ProgramInvocationException:Themainmethodcausedanerror:Columntypesofqueryresultandsinkforregisteredtable‘photoTradeInfoHive.db_audit.ods_photo_trade’donotmatch.Cause:Dif
- Git 本地常见快捷操作
笔沫拾光
git
Git本地常见快捷操作1.基本操作操作命令初始化Git仓库gitinit查看Git状态gitstatus添加所有文件到暂存区gitadd.添加指定文件gitadd提交更改gitcommit-m"提交信息"修改最后一次提交信息gitcommit--amend-m"新提交信息"显示提交历史gitlog--oneline--graph显示修改的文件gitdiff2.分支管理操作命令查看当前分支gitbr
- 【AI论文】TPDiff:时序金字塔视频扩散模型
东临碣石82
人工智能算法
摘要:视频扩散模型的发展揭示了一个重大挑战:巨大的计算需求。为了缓解这一挑战,我们注意到扩散的反向过程具有内在的熵减少特性。鉴于视频模态中的帧间冗余,在高熵阶段保持全帧率是不必要的。基于这一洞见,我们提出了TPDiff,一个统一的框架,用于提高训练和推理效率。通过将扩散过程分为几个阶段,我们的框架在扩散过程中逐步增加帧率,仅在最后阶段采用全帧率,从而优化计算效率。为了训练多阶段扩散模型,我们引入了
- Stable Diffusion/DALL-E 3图像生成优化策略
云端源想
stablediffusion
StableDiffusion的最新版本或社区开发的插件,可以补充这些信息以保持内容的时效性。云端源想1.硬件与部署优化(进阶)显存压缩技术使用--medvram或--lowvram启动参数(StableDiffusionWebUI),通过分层加载模型降低显存占用(适合6GB以下显卡)。分块推理(TiledDiffusion):将图像分割为512×512区块,逐块生成后无缝拼接,支持4096×40
- 【扩散模型Diffusion Model系列】1-一篇文章带你快速入门扩散模型Diffusion Model,个人入门学习路线+优质学习博客资料
Leafing_
DiffusionModel扩散模型人工智能深度学习AIGC扩散模型AI视频生成算法人工智能深度学习
文章目录零、写在前面一、扩散理论缘起DDPM再见,马尔科夫!高视角DDIMLevelup!更高视角SDE、ScoreMatching、ODE走直线!RectifiedFlow和FlowMatching二、模型结构传统派LDMUNet:StableDiffusion维新派MMDiT:StableDiffusion3/Flux三、加速采样多走一步,再比较ConsistencyModel/LCM半白箱采
- git pull报错:Unable to negotiate with port: no matching host key type found. Their offer: ssh-rsa
毛三仙
gitgitssh
Unabletonegotiatewithxx.xx.xx.xxxport29418:nomatchingkeyexchangemethodfound.Theiroffer:diffie-hellman-group14-sha1,diffie-hellman-group1-sha1fatal:无法读取远程仓库。解决方法(在ssh目录新建config文件)sudovim~/.ssh/config添加
- Python, Springboot 开发基于人类指令生成机器人3D可视化动态模型app
Geeker-2025
pythonspringboot
开发一个基于人类指令生成机器人3D可视化动态模型的APP是一个复杂且多层次的项目,涉及前端和后端的多个技术栈。以下是一个高层次的设计概述,涵盖主要的技术栈和功能模块,并提供使用Python和SpringBoot进行联合开发的示例。##技术栈概述###前端-**框架**:React.js或Vue.js(用于构建用户界面)-**3D可视化**:Three.js或React-Three-Fiber(用于
- [Base]DIFFERENTIAL TRANSFORMER
Xy-unu
transformer深度学习人工智能
1.BaseInfoTitleDIFFERENTIALTRANSFORMERAdresshttps://arxiv.org/pdf/2410.05258Journal/Time202410Author微软研究院和清华大学提出Codehttps://aka.ms/Diff-TransformerRead2411112.CreativeQ&A减少对无关上下文的关注;通过计算两个Softmax注意力权重
- 差分注意力,负注意力的引入
syugyou
pytorchpython
文章目录DifferentialTransformer差分注意力,负注意力的引入相关链接介绍初始化函数多头差分注意力DifferentialTransformer差分注意力,负注意力的引入相关链接ai-algorithms/README.mdatmain·Jaykef/ai-algorithms(github.com)unilm/Diff-Transformeratmaster·microsoft
- Diffusion Transformer与Differential Transformer:技术创新与应用前景
AI大模型learner
深度学习人工智能机器学习
引言Transformer架构已成为自然语言处理(NLP)和计算机视觉(CV)领域的主流技术。随着技术的不断发展,DiffusionTransformer和DifferentialTransformer等新型架构逐步涌现,为生成模型和注意力机制带来了突破性的进展。本文旨在从科学视角探讨这两种模型的核心原理、技术特点及应用前景。DiffusionTransformer概念与原理DiffusionTr
- 差分革命:清华微软携手,用物理智慧重塑Transformer“慧眼”
YINWA AI
人工智能科技AI人工智能科技ai
当物理学遇上AI,一场精准捕捉的变革悄然上演想象一下,在信息的汪洋大海中,寻找一根至关重要的“针”,难度无异于“大海捞针”。然而,随着诺贝尔物理学奖的光芒照耀到“机器学习之父”GeoffreyHinton的肩头,另一场跨界融合也在悄然进行——微软与清华大学的科研团队携手,将物理学的智慧融入AI,推出DifferentialTransformer(DIFFTransformer),让Transfor
- LeetCode 376. 摆动序列 java题解
奔跑的废柴
LeetCodeleetcodejava算法贪心贪心算法
https://leetcode.cn/problems/wiggle-subsequence/description/只要不满足摆动条件,就不更新count和prediff当prevDiff取等号时,比如prevDiff==0,在这种情况下,如果currDiff>0,说明从持平状态转变为上升状态,这是一种有效的摆动起始情况;同理,如果currDiff0,这种从持平到上升的情况应该被视为摆动的开始
- 浅谈React的Diff算法,简单易懂!
赵小左
前端javascript开发语言react.jsdiff算法
react16之前,主要是通过递归遍历Vdom树来查找不同。对有变化的部分重新生成真实的DOM。在react16之后,则是引入了新的架构Fiber架构,在Reconciler(协调器)中会进行Diff算法。流程如下:第一次渲染的时候,不进行diff,而是直接将vdom转成Fiber,在内存中构workInProgressFiber树,构建完成之后用它来替换currenFiber,再去通知渲染器进行
- 蓝桥杯备赛笔记--差分、离散化、贪心
ingingingingjingbu
算法数据结构蓝桥杯职场和发展笔记c++
一、差分1.原数组a[n],差分数组diff[n](1)满足的式子:diff[i]=a[i]-a[i-1]diff[1]+diff[2]+...diff[i]=a[i](2)将区间[l,r]里面的都加上x的方法(l+1-r的diff不变):diff[l]+=x;diff[r+1]-=x;(不想让[r+1,n]加上x,则让[r+1,n]减去x)(3)建立差分数组diff[]时注意:让a的下标从1开始
- Stable Diffusion 模型的概念、类型、下载、安装、使用
水滴技术
AI绘画从入门到精通stablediffusionAI作画AIGCpython
本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。大家好,我是水滴~~我们在《StableDiffusionWebUI界面介绍》时,第一个就讲到了StableDiffusion模型,那么这个模型是什么?该从哪儿下载?下载后放到哪儿?该怎么使用呢?本篇文章将围绕着这几个问题来逐一讲述。文章目录一、什么是模型二、大模型的类型2.1基础模型(BaseModel)2.2文件类型三、大模型在哪儿下
- Stable Diffusion游戏底模推荐
Liudef06
从零开始设计游戏stablediffusion游戏
一、基础通用型底模SDXLbase官方原版底模,支持1024x1024高清出图,适用于各类游戏场景和角色的基础生成,建议作为微调训练的基准模型。来源:相关搜索结果写实风格搭配推荐搭配9realisticSDXL或麻袋realistic_XL,增强光影真实感和皮肤细节表现。来源:相关搜索结果二、二次元/动漫风格animagineXLV3_v30专为二次元优化的底模,适合日系动漫角色设计,支持高精度面
- python anova_使用Python进行双向ANOVA的三种方法
cumei1658
python机器学习深度学习人工智能数据分析
pythonanovaInanearlierpostIshowedfourdifferenttechniquesthatenablestwo-wayanalysisofvariance(ANOVA)usingPython.Inthispostwearegoingtolearnhowtodotwo-wayANOVAforindependentmeasuresusingPython.在较早的文章中,我
- 为什么VAE效果不好,但VAE+diffusion效果就好了?
AndrewHZ
深度学习新浪潮算法计算机视觉深度学习扩散模型VAE生成式模型技术分析
1.什么是VAE?VAE(VariationalAutoencoder,变分自编码器)是一种基于概率生成模型的深度学习框架,主要用于数据生成和潜在空间建模。它结合了自编码器(Autoencoder)的结构和变分推断(VariationalInference)的思想,能够从数据中学习有意义的潜在表示,并生成与训练数据相似的新样本。VAE的核心思想编码-解码结构类似传统自编码器,VAE包含两个部分:编
- 扩散 Transformer 策略:用于通才视觉-语言-动作学习的规模化扩散 Transformer
三谷秋水
计算机视觉大模型智能体transformer深度学习计算机视觉语言模型人工智能机器学习
25年2月来自上海AI实验室、浙大、香港中文大学、北大、商汤科技、清华和中科院香港科学创新研究院的论文“DiffusionTransformerPolicy:ScalingDiffusionTransformerforGeneralistVision-Language-ActionLearning”。最近,在多样化的机器人数据集上进行预训练的大型视觉-语言-动作模型,已展示出利用少量域内数据泛化到
- 虚拟dom的diff中的双端比较算法
永遠に_
算法javascript前端
双端比较算法是Vue中用于高效比较新旧VNode子节点的一种策略。该算法的核心思想是,通过从新旧VNode子节点的两端开始比较,逐步向中间靠拢,以找到最小的差异并据此更新DOM。以下是双端比较算法的大致流程:初始化指针:设置四个指针,分别指向新旧VNode子节点的开始和结束位置。首尾比较:首先比较新旧VNode子节点的首尾元素。如果首尾元素相同,则直接复用,并移动相应的指针。交叉比较:
- Linux 常用 20 条指令,解决大部分问题
yqcoder
linux服务器运维
find:查找文件和目录例:find/-nameerror.log在/根目录下开始查找,名字为error.log的文件ps:查看当前进程信息例:ps-ef-e代表显示所有进程-f代表使用详细的进程信息vi:Linux系统中重要的文本编辑工具例:vidm.ini进入dm.ini文件进行内容编辑diff:比较文件差异例:diffdm.inidm_bak.ini比较dm.ini和dm_bak.ini的内
- 探索Coco-Web:一款强大的H5创作工具
岑晔含Dora
探索Coco-Web:一款强大的H5创作工具去发现同类优质开源项目:https://gitcode.com/是一个开源的、基于Web的H5(HTML5)创作平台,旨在让开发者和设计师能够轻松地创建互动式的内容和应用。通过其直观的界面和丰富的功能,无论你是编程高手还是初学者,都能够利用Coco-Web制作出富有吸引力的数字内容。技术分析Coco-Web基于现代Web技术构建,包括:React.js:
- 针对AF调试过程中PD多窗机制是如何打分的
爱写BUG的长歌
人工智能计算机视觉算法
在AF(自动对焦)调试中,PD多窗机制(PhaseDetectionMulti-Window)是提升相位对焦精度和鲁棒性的关键技术,其核心是通过在画面中划分多个相位检测窗口,分别计算各窗口的相位差(PhaseDifference)并进行综合评分,最终选择最优对焦位置。以下是其打分机制的核心逻辑和调试要点:1.多窗口布局与权重分配窗口划分根据Sensor的PDAF像素分布,将画面划分为多个区域(例如
- Vue中vfor循环创建DOM时Key的理解之Vue中的diff算法
充气大锤
前端性能优化vue.jsjavascript前端学习笔记算法ecmascript
在Vue开发过程中vfor遍历数组创建Dom是最常见的方式,在vfor时,标签中有一个key值,key值的作用是啥呢?这就不得不提到Vue中的diff算法。一、什么是diff算法Vue会用虚拟DOM来表述真实DOM,这样的目的是为了计算出DOM的最小的变化从而更加快速的更新真实DOM二、diff算法的计算过程1、遍历老虚拟DOM2、遍历新虚拟DOM3、重新排序这样做会有个问题,就是节点数越多,计算
- Voice Translation of Audio Files into Different Languages Using Gpt-4o
开发者每周简报
ffmpeg人工智能
openai-cookbook/examples/voice_solutions/voice_translation_into_different_languages_using_GPT-4o.ipynbatmain·openai/openai-cookbook·GitHub您是否曾经想将播客翻译成您的母语?翻译和配音音频内容可以使其更便于全球观众理解。借助GPT-4o的全新音频输入和音频输出模式
- (十)Ubuntu 20.04+akiaaa大神 Stable Diffusion整合包 AI绘画教程-外挂VAE模型等快捷设置教程
浪淘沙jkp
stablediffusionAI作画
一、说明我们在运行Stable-Diffusion-webuiclip时初始快捷设置为如图所示我们需要显示“外挂VAE模型”以及“clip终止层数”的快捷设置,我们需要在设置中设置参数二、参数设置依次点击设置---》用户界面---》快捷设置列表然后再下拉菜单中选择这两部居然不行,没有出现想要的效果,后来我后天bashwebui.sh-f了一下下,就可以了看下图
- 【CSDN首发】Stable Diffusion从零到精通学习路线分享
SD入门学习
stablediffusion学习人工智能AIGCmidjourneyAI作画
前言:StableDiffusion(简称SD)作为当前最热门的AI绘画工具之一,凭借其开源免费、可本地部署、功能强大等优势,吸引了大量开发者和艺术创作者的关注。然而,由于其技术门槛较高,许多初学者在入门时常常感到无从下手。本文将为你梳理一条从零基础到精通StableDiffusion的学习路线,帮助你快速掌握这一强大工具。一、StableDiffusion简介与核心原理StableDiffusi
- Vue 框架深度解析:源码分析与实现原理详解
北辰alk
vue前端vue.js前端javascript
文章目录一、Vue核心架构设计1.1整体架构流程图1.2模块职责划分二、响应式系统源码解析2.1核心类关系图2.2核心源码分析2.2.1数据劫持实现2.2.2依赖收集过程三、虚拟DOM与Diff算法实现3.1Diff算法流程图3.2核心Diff源码四、模板编译全流程剖析4.1编译流程图4.2编译阶段源码五、组件系统与生命周期5.1组件初始化流程5.2生命周期源码触发点六、异步更新队列与性能优化6.
- 每日AIGC最新进展(41):上海AI Lab提出新型DiT结构Lumina-Next、Adobe研究院提出图像与文本对齐方法AlignIT、新型多模态图像生成模型MUMU
沉迷单车的追风少年
DiffusionModels与深度学习AIGC人工智能深度学习扩散模型计算机视觉adobe
DiffusionModels专栏文章汇总:入门与实战Lumina-Next:MakingLumina-T2XStrongerandFasterwithNext-DiTLumina-Next是一种新型的生成模型,旨在通过改进的Next-DiT架构、上下文外推技术和快速采样技术,解决前身Lumina-T2X在生成质量和效率上的挑战。该模型通过3DRoPE和三明治归一化等技术,提高了图像和视频生成的稳
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息