题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544
最近复习了最短路径的算法,就写了4个版本的测试。正好是模板题,就果断A之。。。
Dijkstar版本:
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define N 110
#define MAX 999999
#define CLR(arr, what) memset(arr, what, sizeof(arr))
int nodenum, edgenum;
int map[N][N], dis[N];
bool visit[N];
int Dijkstra(int src, int des)
{
int temp, k;
CLR(visit, false);
for(int i = 1; i <= nodenum; ++i)
dis[i] = (i == src ? 0 : map[src][i]);
visit[src] = true;
dis[src] = 0;
for(int i = 1; i<= nodenum; ++i)
{
temp = MAX;
for(int j = 1; j <= nodenum; ++j)
if(!visit[j] && temp > dis[j])
temp = dis[k = j];
if(temp == MAX)
break;
visit[k] = true;
for(int j = 1; j <= nodenum; ++j)
if(!visit[j] && dis[j] > dis[k] + map[k][j])
dis[j] = dis[k] + map[k][j];
}
return dis[des];
}
int main()
{
int start, end, cost;
int answer;
while(~scanf("%d%d", &nodenum, &edgenum) && (nodenum + edgenum))
{
for(int i = 1; i <= nodenum; ++i)
for(int j = 1; j <= nodenum; ++j)
map[i][j] = MAX;
for(int i = 1; i <= edgenum; ++i)
{
scanf("%d%d%d", &start, &end, &cost);
if(cost < map[start][end])
map[start][end] = map[end][start] = cost;
}
answer = Dijkstra(1, nodenum);
printf("%d\n", answer);
}
return 0;
}
Bellman_Ford版本:
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define N 110
#define MAX 999999
#define CLR(arr, what) memset(arr, what, sizeof(arr))
int nodenum, edgenum;
int map[N][N], dis[N];
bool visit[N];
struct Edge
{
int u, v;
int cost;
}e[N * N / 2];
int Bellman_ford(int src, int des)
{
for(int i = 1; i <= nodenum; ++i)
dis[i] = MAX;
dis[src] = 0;
for(int i = 0; i < nodenum - 1; ++i) //n-1遍
for(int j = 0; j < edgenum * 2; ++j) //each edge
if(dis[e[j].v] > dis[e[j].u] + e[j].cost)
dis[e[j].v] = dis[e[j].u] + e[j].cost;
return dis[des];
}
int main()
{
int start, end, cost;
int answer;
while(~scanf("%d%d", &nodenum, &edgenum) && (nodenum + edgenum))
{
for(int i = 0; i < edgenum; ++i)
{
scanf("%d%d%d", &start, &end, &cost); //双向边
e[i * 2].u = start, e[i * 2].v = end, e[i * 2].cost = cost;
e[i * 2 + 1].u = end, e[i * 2 + 1].v = start, e[i * 2 + 1].cost = cost;
}
answer = Bellman_ford(1, nodenum);
printf("%d\n", answer);
}
return 0;
}
Floyd版本:
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define N 110
#define MAX INT_MAX >> 1
#define CLR(arr, what) memset(arr, what, sizeof(arr))
int nodenum, edgenum;
int map[N][N], dis[N];
bool visit[N];
int Floyd(int src, int des) //多源多汇最短路
{
for(int k = 1; k <= nodenum; ++k)
for(int i = 1; i <= nodenum; ++i)
for(int j = 1; j <= nodenum; ++j)
map[i][j] = min(map[i][j], map[i][k] + map[k][j]);
return map[src][des];
}
int main()
{
int start, end, cost;
int answer;
while(~scanf("%d%d", &nodenum, &edgenum) && (nodenum + edgenum))
{
for(int i = 1; i <= nodenum; ++i)
for(int j = 1; j <= nodenum; ++j)
map[i][j] = MAX;
for(int i = 0; i < edgenum; ++i)
{
scanf("%d%d%d", &start, &end, &cost);
if(cost < map[start][end])
map[start][end] = map[end][start] = cost;
}
answer = Floyd(1, nodenum);
printf("%d\n", answer);
}
return 0;
}
SPFA版本:
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define N 110
#define MAX INT_MAX >> 1
#define CLR(arr, what) memset(arr, what, sizeof(arr))
int nodenum, edgenum;
int map[N][N], dis[N];
bool visit[N];
int SPFA(int src, int des)
{
queue q;
CLR(visit, false);
for(int i = 1;i <= nodenum; ++i)
dis[i] = MAX;
dis[src] = 0;
visit[src] = true;
q.push(src);
while(!q.empty())
{
int cur = q.front();
q.pop();
visit[cur] = false; //出队标记为false
for(int i = 1; i <= nodenum; ++i)
{
if(dis[i] > dis[cur] + map[cur][i]) //没有2个集合,和Dijkstra有本质区别
{
dis[i] = dis[cur] + map[cur][i]; //能松弛就松弛
if(!visit[i]) //不在队列中则加入,然后更新所有以前经过此点的最短路径
{
q.push(i);
visit[i] = true;
}
}
}
}
return dis[des];
}
int main()
{
int start, end, cost;
int answer;
while(~scanf("%d%d", &nodenum, &edgenum) && (nodenum + edgenum))
{
for(int i = 1; i <= nodenum; ++i)
for(int j = 1; j <= nodenum; ++j)
map[i][j] = MAX;
for(int i = 0; i < edgenum; ++i)
{
scanf("%d%d%d", &start, &end, &cost);
if(cost < map[start][end])
map[start][end] = map[end][start] = cost;
}
answer = SPFA(1, nodenum);
printf("%d\n", answer);
}
return 0;
}