- 大数据手册(Spark)--Spark安装配置
WilenWu
数据分析(DataAnalysis)大数据spark分布式
本文默认在zsh终端安装配置,若使用bash终端,环境变量的配置文件相应变化。若安装包下载缓慢,可复制链接到迅雷下载,亲测极速~准备工作Spark的安装过程较为简单,在已安装好Hadoop的前提下,经过简单配置即可使用。假设已经安装好了hadoop(伪分布式)和hive,环境变量如下JAVA_HOME=/usr/opt/jdkHADOOP_HOME=/usr/local/hadoopHIVE_HO
- 国内外AI搜索产品盘点
Suee2020
人工智能
序号AISearch产品名简介网站开发者1Perplexity强大的对话式AI搜索引擎https://www.perplexity.aiPerplexity2GensparkAIAgent搜索引擎https://www.genspark.aiMainFunc(景鲲、朱凯华)3Kimi.ai智能助手https://kimi.moonshot.cn/月之暗面(杨植麟)4秘塔AI搜索AI搜索引擎http
- HIVE开窗函数
Cciccd
sqlhive
ETL,SQL面试高频考点——HIVE开窗函数(基础篇)目录标题ETL,SQL面试高频考点——HIVE开窗函数(基础篇)一,窗口函数介绍二,开窗函数三,分析函数分类1,排序分析函数:实列解析对比总结2.聚合分析函数3.用spark自定义HIVE用户自定义函数后续更新中~一,窗口函数介绍窗口函数,也叫OLAP函数(OnlineAnallyticalProcessing,联机分析处理),可以对数据库数
- Hive MR & Spark & Yarn参数优化总结
大数据侠客
hive相关问题汇总及解决hivesparkmryarn参数优化
一、hivemr参数调优:sethive.optimize.ppd=true;--开启谓词下推。--动态分区参数sethive.exec.mode.local.auto=true;sethive.exec.dynamic.partition.mode=nonstrict;--默认是strict,表示至少有一个静态分区,nonstri
- Spark 中创建 DataFrame 的2种方式对比
闯闯桑
spark大数据分布式scala
spark.createDataFrame(data).toDF("name","age")和spark.createDataFrame(spark.sparkContext.parallelize(data),schema)创建df的方式有什么区别?在Spark中,创建DataFrame的方式有多种,其中两种常见的方式是:spark.createDataFrame(data).toDF("nam
- python手写kmeans算法
菜鸟懿
机器学习聚类算法python
kmean聚类是最基础和常见的算法,工程上使用比较常见,spark,sklearn都有实现,本文手写实现kmeans#!/usr/bin/pythonimportsysimportrandomimportmathdefcreate_rand_points(max_x,max_y,count):"""Createcountpoints(0-x),(0-y)."""points=[]foriinran
- 数据分析大数据面试题大杂烩01
爱学习的菜鸟罢了
大数据flink大数据面试hivehadoopkafka
互联网:通过埋点实时计算用户浏览频次用优惠券等措施吸引用户,通过历史信息用非智能学习的title方式构造用户画像(抖音,京东)电信,银行统计营收和针对用户的个人画像:处理大量非实时数据政府:健康码,扫码之后确诊,找出与确诊对象有关联的人订单订单表(除商品以外所有信息),商品详情表,通过搜集用户title进行定制化推荐点击流数据通过埋点进行用户点击行为分析FLINK一般用来做实时SPARK一般用来做
- doris:SQL 方言兼容
向阳1218
大数据doris
提示从2.1版本开始,Doris可以支持多种SQL方言,如Presto、Trino、Hive、PostgreSQL、Spark、Clickhouse等等。通过这个功能,用户可以直接使用对应的SQL方言查询Doris中的数据,方便用户将原先的业务平滑的迁移到Doris中。警告该功能目前是实验性功能,您在使用过程中如遇到任何问题,欢迎通过邮件组、GitHubIssue等方式进行反馈。部署服务下载最新版
- 25年大数据开发省赛样题第一套,离线数据处理答案
Tometor
大数据sparkscala
省赛样题一,数据抽取模块这一模块的作用是从mysql抽取数据到ods层进行指标计算,在题目中要求进行全量抽取,并新增etl-date字段进行分区,日期为比赛前一天importorg.apache.spark.sql.SparkSessionimportjava.util.PropertiesobjectTask1{defmain(args:Array[String]):Unit={valspark
- sparkML入门,通俗解释机器学习的框架和算法
Tometor
spark-ml机器学习算法回归数据挖掘人工智能scala
一、机器学习的整体框架(类比烹饪)假设你要做一道菜,机器学习的过程可以类比为:步骤-->烹饪类比-->机器学习对应1.确定目标|想做什么菜(红烧肉/沙拉)|明确任务(分类/回归/聚类)2.准备食材|买菜、洗菜、切菜|数据收集与预处理3.设计食谱|决定烹饪步骤和调料|选择算法和模型设计4.试做并尝味道|调整火候和调味|模型训练与调参5.最终成品|端上桌的菜|模型部署与应用二、机器学习的核心流程1.数
- 【设计模式】遍历集合的艺术:深入探索迭代器模式的无限可能
后端java设计模式
概述定义:提供一个对象来顺序访问聚合对象中的一系列数据,而不暴露聚合对象的内部表示。结构迭代器模式主要包含以下角色:抽象聚合(Aggregate)角色:定义存储、添加、删除聚合元素以及创建迭代器对象的接口。具体聚合(ConcreteAggregate)角色:实现抽象聚合类,返回一个具体迭代器的实例。抽象迭代器(Iterator)角色:定义访问和遍历聚合元素的接口,通常包含hasNext()、nex
- 大数据面试之路 (三) mysql
愿与狸花过一生
大数据面试职场和发展
技术选型通常也是被问道的问题,一方面考察候选人对技术掌握程度,另一方面考察对项目的理解,以及项目总结能力。介绍项目是从数据链路介绍,是一个很好来的方式,会让人觉得思路清晰,项目理解透彻。将SparkSQL加工后的数据存入MySQL通常基于以下几个关键原因:1.数据应用场景适配OLTP与OLAP分工:SparkSQL擅长处理大数据量的OLAP(分析型)任务,而MySQL作为OLTP(事务型)数据库,
- 如何使用 SparkLLM 进行自然语言处理
shuoac
python
在当代自然语言处理领域,拥有强大的跨域知识和语言理解能力的模型至关重要。iFLYTEK开发的SparkLLM便是这样一个大规模认知模型。通过学习大量文本、代码和图像,SparkLLM能够理解和执行基于自然对话的任务。在本文中,我们将深入探讨如何配置和使用SparkLLM来处理自然语言任务。技术背景介绍大规模语言模型(LLM)近年来在各个领域中获得了广泛的应用,它们在处理自然语言任务时表现出色。iF
- RDD 行动算子
阿强77
RDDSpark
在ApacheSpark中,RDD(弹性分布式数据集)是核心数据结构之一。行动算子会触发实际的计算并返回结果或执行某些操作。以下是Scala中常见的RDD行动算子:1.collect()将RDD中的所有数据收集到驱动程序中,并返回一个数组。注意:如果数据集很大,可能会导致内存不足。valdata:Array[T]=rdd.collect()2.count()返回RDD中元素的总数。valcount
- 讲一下Spark的shuffle过程
冰火同学
Sparkspark大数据分布式
首先Spark的shuffle是Spark分布式集群计算的核心。Spark的shuffle可以从shuffle的阶段划分,shuffle数据存储,shuffle的数据拉取三个方面进行讲解。首先shuffle的阶段分为shuffle的shufflewrite阶段和shuffleread阶段。shufflewrite的触发条件就是上游的Stage任务shuffleMapTask完成计算后,会哪找下游S
- Spark常见面试题目(1)
冰火同学
Sparkspark面试大数据
Spark有哪几种部署的方式,谈谈方式都有哪些特点第一种是local本地部署,通常就是一台机器用于测试。第二种是standalone部署模式,就是一个master节点,控制几个work节点,其实一台机器的standalone模式就是它自己即是master,又是work。第三种是yarn模式,就是吧spark交给yarn进行资源调度管理。第四种就是messon模式,这种在国内很少见到。Spark主备
- Spark数据倾斜的问题
冰火同学
Sparkspark大数据分布式
Spark数据倾斜业务背景Spark数据倾斜表现Spark的数据倾斜,包括SparkStreaming和SparkSQL,表现主要有下面几种:1、Excutorlost,OOM,Shuffle过程出错2、DriverOOM3、单个Excutor执行器一直在运行,整体任务卡在某个阶段不能结束4、正常运行的任务突然失败数据倾斜产生的原因以Spark使用场景为例,我们再做数据计算的时候会涉及类似coun
- PySpark实现导出两个包含多个Parquet数据文件的S3目录里的对应值的差异值分析
weixin_30777913
pythonspark数据分析云计算
编写PySpark代码实现从一个包含多个Parquet数据文件的AmazonS3目录的dataframe数据里取两个维度字段,一个度量字段的数据,根据这两个维度字段的数据分组统计,计算度量字段的数据的分组总计值,得到一个包含两个维度字段和度量字段的分组总计值字段的dataframe,再从另一个包含多个Parquet数据文件的S3目录的dataframe数据里取两个维度字段,一个度量字段的数据组成一
- Hadoop、Spark和 Hive 的详细关系
夜行容忍
hadoopsparkhive
Hadoop、Spark和Hive的详细关系1.ApacheHadoopHadoop是一个开源框架,用于分布式存储和处理大规模数据集。核心组件:HDFS(HadoopDistributedFileSystem):分布式文件系统,提供高吞吐量的数据访问。YARN(YetAnotherResourceNegotiator):集群资源管理和作业调度系统。MapReduce:基于YARN的并行处理框架,用
- 大数据技术生态圈:Hadoop、Hive、Spark的区别和关系
雨中徜徉的思绪漫溢
大数据hadoophive
大数据技术生态圈:Hadoop、Hive、Spark的区别和关系在大数据领域中,Hadoop、Hive和Spark是三个常用的开源技术,它们在大数据处理和分析方面发挥着重要作用。虽然它们都是为了处理大规模数据集而设计的,但它们在功能和使用方式上存在一些区别。本文将详细介绍Hadoop、Hive和Spark的区别和关系,并提供相应的源代码示例。Hadoop:Hadoop是一个用于分布式存储和处理大规
- 大数据面试之路 (一) 数据倾斜
愿与狸花过一生
大数据面试职场和发展
记录大数据面试历程数据倾斜大数据岗位,数据倾斜面试必问的一个问题。一、数据倾斜的表现与原因表现某个或某几个Task执行时间过长,其他Task快速完成。Spark/MapReduce作业卡在某个阶段(如reduce阶段),日志显示少数Task处理大量数据。资源利用率不均衡(如CPU、内存集中在某些节点)。常见场景Key分布不均:如某些Key对应的数据量极大(如用户ID为空的记录、热点事件)。数据分区
- scala针对复杂数据源导入与分隔符乱码处理
Tometor
scalajavascript后端java数据结构
复杂的数据源,和奇怪的数据格式是生产中经常遇到的难题,本文将探讨如何解析分隔符混乱的数据,和如何导入各种数据源文件一、非标准分隔符处理当数据源的分隔符混乱或不统一时(如,、|、\t混合使用),可采用以下方法:1.1动态检测分隔符//示例:自动检测前100行的常用分隔符valsampleLines=spark.read.text("data.csv").limit(100).collect()val
- Spark-TTS:基于大模型的文本语音合成工具
CITY_OF_MO_GY
魅力语音语音识别深度学习人工智能
GitHub:https://github.com/SparkAudio/Spark-TTSSpark-TTS是一个先进的文本到语音系统,它利用大型语言模型(LLM)的强大功能进行高度准确和自然的语音合成;旨在高效、灵活、强大地用于研究和生产用途。一、介绍SparkTTS完全基于Qwen2.5构建,无需额外的生成模型,它不依赖于单独的模型来生成声学特征,而是直接从LLM预测的代码中重建音频。这种方
- Chapter 4-8. Troubleshooting Congestion in Fibre Channel Fabrics
mounter625
Linuxkernel服务器网络kernellinux
Utilizingtheshowtech-supportslowdrainCommandTheshowtech-supportslowdrainisasinglecommandonCiscoMDSswitchesthataggregatesalltheothercommandsnormallynecessaryfortroubleshootingcongestionintoasingleoutpu
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- 大数据实战:Spark + Hive 逐笔计算用户盈亏
WuJiWeb3
区块链链上数据分析从0到1搭建区块链大数据平台sparkhive大数据web3区块链hadoop
简介本文将通过使用Spark+Hive实现逐笔计算区块链上用户交易数据的盈亏需求。由于我们是进行离线计算,所以我们的数据源是Hive表数据,Sink表也是Hive表,即Spark读取Hive表数据进行批计算之后写回到Hive表并供后续使用。通过本文你将会学到:如何使用SparkSQLAPI读取Hive数据源如何通过读取配置文件进行传参执行SQL如何将SparkSQL转换为JavaRDD进行处理如何
- Doris存储的逻辑架构和物理架构
fzip
Doris数据湖架构Doris
ApacheDoris的存储架构分为逻辑架构和物理架构两个层面,其设计核心围绕数据分布与查询优化展开。以下为详细解析:一、逻辑架构1.表结构分层逻辑表(LogicalTable)用户直接操作的抽象表,支持多种数据模型:明细模型(DuplicateKeyModel):原始数据存储,无预聚合,适合日志类场景。聚合模型(AggregateKeyModel):写入时按维度预聚合(如SUM、COUNT),适
- 分布式计算入门(PySpark处理NASA服务器日志)
闲人编程
Python数据分析实战精要服务器运维统计分析日志NASA服务器分布式计算PySpark
目录分布式计算入门(PySpark处理NASA服务器日志)1.引言2.分布式计算概述2.1分布式计算的基本概念2.2ApacheSpark与PySpark3.NASA服务器日志数据集介绍3.1数据背景3.2数据格式与挑战4.PySpark基础与分布式日志处理4.1PySpark基本架构4.2日志数据加载与解析4.3数据清洗与内存优化4.4GPU加速与SparkRAPIDS5.实验环境与依赖库6.数
- Dask vs. Apache Spark: 大数据处理的利器对比与应用实例
步入烟尘
Python超入门指南全册apachespark大数据
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- spark yum配置
Amu_Yalo
spark
yum配置Yum是一个linux工具,用来从网络上下载安装软件到CentOS操作系统中。先要确保虚拟机的网络是通畅的。(1)查看源yum中的源是指它从哪里去下载软件。把yum想象成你自己开的一家商场,那么yum的源就是你的供货商。通过yumrepolist命令可以去查看当前的供货商信息。(如果显示源信息是mirrorlist.centos.org(默认源),那就不能使用了。这个源已经失效了,就是你
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><