flume+hbase,自定义hbase-sink,hive集成habase

1.编写flume-hbase.conf

a1.sources=r1
a1.channels= hbaseC
a1.sinks= hbaseS2

a1.sources.r1.type = avro
a1.sources.r1.bind = spark1
#spark1端的flume source的端口必须与8989保持一致
a1.sources.r1.port = 8989
a1.sources.r1.threads = 5

#*********************flume+hbase**************************
a1.sources.r1.channels = hbaseC
a1.sinks.hbaseS2.channel = hbaseC

a1.channels.hbaseC.type = memory
a1.channels.hbaseC.capacity = 10000
a1.channels.hbaseC.transactionCapacity = 10000
a1.channels.hbaseC.keep-alive = 20
 
a1.sinks.hbaseS2.type = asynchbase

#weblogs为hbase的表名
a1.sinks.hbaseS2.table = weblogs

#info为hbase表的列族名,UserDfAsyncHbaseEventSerializer为自定义类名
a1.sinks.hbaseS2.columnFamily = info
a1.sinks.hbaseS2.serializer = org.apache.flume.sink.hbase.UserDfAsyncHbaseEventSerializer

#payloadColumn为flume监听数据的列名,将会映射到hbase的列名
a1.sinks.hbaseS2.serializer.payloadColumn=datetime,userid,searchname,retorder,cliorder,cliurl

2.在hbase中创建表:create ‘weblogs’,‘info’

3.自定义UserDfAsyncHbaseEventSerializer类,下载flume的源码,加载源码的flume-ng-hbase-sink包,在改包下自定义一个UserDfAsyncHbaseEventSerializer类继承AsyncHbaseEventSerializer接口,具体方法如下:

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.flume.sink.hbase;
import com.google.common.base.Charsets;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.FlumeException;
import org.apache.flume.conf.ComponentConfiguration;
import org.hbase.async.AtomicIncrementRequest;
import org.hbase.async.PutRequest;
import java.util.ArrayList;
import java.util.List;

public class UserDfAsyncHbaseEventSerializer implements AsyncHbaseEventSerializer {

    //表名
    private byte[] table;

    //列族名
    private byte[] colFam;

    //当前事件
    private Event currentEvent;

    //列名
    private byte[][] columnNames;

    //用于向Hbase批量存数据
    private final List puts = new ArrayList();
    private final List incs = new ArrayList();

    //当前行建
    private byte[] currentRowKey;
    private final byte[] eventCountCol = "eventCount".getBytes();

    @Override
    public void configure(Context context) {
        //从配置文件中获取列名
        String cols = context.getString("payloadColumn");
        String[] names = cols.split(",");
        columnNames = new byte[names.length][];
        int i = 0;
        for (String name : names) {
            columnNames[i++] = name.getBytes();
        }
    }


    @Override
    public void cleanUp() {
        table = null;
        colFam = null;
        currentEvent = null;
        columnNames = null;
        currentRowKey = null;
    }

    @Override
    public List getActions() {
        //分割事件,获取各列的值
        String eventStr = new String(currentEvent.getBody());
        String[] cols = eventStr.split(",");
        puts.clear();
        String datetime = cols[0];
        String userid = cols[1];

        if (cols.length == columnNames.length) {

            //生成行键
            try {
                currentRowKey = SimpleRowKeyGenerator.getHbaseRowKey(userid, datetime);
            } catch (Exception e) {
                throw new FlumeException("Could not get row key!", e);
            }
            //添加每列数据
            for (int i = 0; i < cols.length; i++) {
                PutRequest putReq = new PutRequest(table, currentRowKey, colFam, columnNames[i], cols[i].getBytes(Charsets.UTF_8));
                puts.add(putReq);
            }
        }
        return puts;
    }

    @Override
    public List getIncrements() {
        //增加接受的事件数量
        incs.clear();
        incs.add(new AtomicIncrementRequest(table, "totalEvents".getBytes(), colFam, eventCountCol));
        return incs;
    }

    //初始化表名和列族名
    @Override
    public void initialize(byte[] table, byte[] colFam) {
        this.table = table;
        this.colFam = colFam;
    }

    @Override
    public void setEvent(Event event) {
        this.currentEvent = event;
    }

    @Override
    public void configure(ComponentConfiguration conf) {
        // TODO Auto-generated method stub
    }

}

4.打包上传到flume的lib下。

5.启动hbase、flume服务。

6.配置hive集成hbase方法:

a.在hive-site.xml文件中配置zookeeper,hive通过这些参数去连接hbase

        
            hbase.zookeeper.quorum
            spark1
        

 b.将hbase的下面的依赖包拷贝到hive的lib下面,如果cdh同版本的,就不需要拷贝
            hbase-server-1.2.9.jar
            hbase-client-1.2.9.jar
            hbase-protocol-1.2.9.jar
            hbase-it-1.2.9.jar
            htrace-core-3.1.0-incubating.jar
            hbase-hadoop2-compat-1.2.9.jar
            hbase-hadoop-compat-1.2.9.jar

c.在hive中创建表

create external table weblogs(
id string,
datetime string,
userid string,
searchname string,
retorder string,
cliorder string,
cliurl string
) stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
with serdeproperties ("hbase.columns.mapping" = ":key, info:datetime,info:userid,info:searchname,info:retorder,info:cliorder,info:cliurl") tblproperties("hbase.table.name"="weblogs");

最后可以从hbase中加载数据到hive表中进行离线分析。

 

你可能感兴趣的:(hadoop,hive,hbase)