- nosql数据库技术与应用知识点
皆过客,揽星河
NoSQLnosql数据库大数据数据分析数据结构非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
- 浅谈MapReduce
Android路上的人
Hadoop分布式计算mapreduce分布式框架hadoop
从今天开始,本人将会开始对另一项技术的学习,就是当下炙手可热的Hadoop分布式就算技术。目前国内外的诸多公司因为业务发展的需要,都纷纷用了此平台。国内的比如BAT啦,国外的在这方面走的更加的前面,就不一一列举了。但是Hadoop作为Apache的一个开源项目,在下面有非常多的子项目,比如HDFS,HBase,Hive,Pig,等等,要先彻底学习整个Hadoop,仅仅凭借一个的力量,是远远不够的。
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- Hadoop架构
henan程序媛
hadoop大数据分布式
一、案列分析1.1案例概述现在已经进入了大数据(BigData)时代,数以万计用户的互联网服务时时刻刻都在产生大量的交互,要处理的数据量实在是太大了,以传统的数据库技术等其他手段根本无法应对数据处理的实时性、有效性的需求。HDFS顺应时代出现,在解决大数据存储和计算方面有很多的优势。1.2案列前置知识点1.什么是大数据大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的大量数据集合,
- hbase介绍
CrazyL-
云计算+大数据hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
- HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
- 【HDFS】【HDFS架构】【HDFS Architecture】【架构】
资源存储库
hdfs架构hadoop
目录1Introduction介绍2AssumptionsandGoals假设和目标HardwareFailure硬件故障StreamingDataAccess流式数据访问LargeDataSets大型数据集SimpleCoherencyModel简单凝聚力模型“MovingComputationisCheaperthanMovingData”“移动计算比移动数据更便宜”PortabilityAc
- Hadoop学习第三课(HDFS架构--读、写流程)
小小程序员呀~
数据库hadoop架构bigdata
1.块概念举例1:一桶水1000ml,瓶子的规格100ml=>需要10个瓶子装完一桶水1010ml,瓶子的规格100ml=>需要11个瓶子装完一桶水1010ml,瓶子的规格200ml=>需要6个瓶子装完块的大小规格,只要是需要存储,哪怕一点点,也是要占用一个块的块大小的参数:dfs.blocksize官方默认的大小为128M官网:https://hadoop.apache.org/docs/r3.
- hdfs启动流程
weixin_44352020
hadoophdfshadoop
Namenode1.init()namenode初始化,执行加载配置文件等操作2.loadFsImage()开始加载元数据将FsImage护额徐为目录树,保存在内存中FsImage中主要包含了问价你和数据块的对应关系3.loadEditlog()加载Editlog,将Editlog中记录的元数据修改应用到内存中;4.saveCheckpoint()将内存中最新的目录树持久化为新的FsImage到磁
- hdfs开机启动流程
鸭梨山大哎
hadoophdfs
第一步:加载name目录下最新的那个fsimage_xxx019文件,将里面存储的元数据(目录树结构)维护到内存中,但是还不是关机前的状态第二步:将关机前的最后使用的edits_inprogress_xxxx0160进行重命名edits_0000000000000000160-0000000000000000169操作,然后生成一个最新的edits_inprogress_xxx170文件,并修改s
- hadoop启动HDFS命令
m0_67401228
java搜索引擎linux后端
启动命令:/hadoop/sbin/start-dfs.sh停止命令:/hadoop/sbin/stop-dfs.sh
- 【HDFS主从集群】存在两个独立的问题和解决方案
流辉fglow
大数据#HDFShdfsjavahadoop大数据分布式学习
主从集群存在两个独立的问题和解决方案单点“主”的两个独立的问题以下是解决方案HA高可用方案:解决单点故障导致集群整体不可用问题Federation联邦机制:解决NN压力过大问题总结一般很多技术都是主从结构(最简单的结构)优点:结构相对简单,主与从协作“主”是单点,好处有,缺点也有好处:单点NameNode,数据一致性好掌握 因为一个人管,说一不二的单点“主”的两个独立的问题关键词:独立:两套独立
- 【HDFS】角色的架构设计
流辉fglow
#HDFS大数据hdfshadoop大数据学习分布式
HDFS角色的架构设计前置知识:Windows与Linux文件系统的差异HDFS中的角色及功能HDFS的架构NameNodeDataNodeNameNode元数据的持久化说明:/表示两个词是同一语义,方便你理解的前置知识:Windows与Linux文件系统的差异Windows&LInux虽然都有硬盘/分区、目录,但感受很不同的是:Windows:有很强的分区概念,要先通过不同的“盘符”去找文件在命
- HDFS的启动过程
ffbc2020
HDFSHDFS
HDFS的启动过程HDFS的启动过程分为四个阶段:第一阶段:NameNode读取包含元数据信息的fsimage文件,并加载到内存;第二阶段:NameNode读取体现HDFS最新状态的edits日志文件,并加载到内存中第三阶段:生成检查点,SecondaryNameNode将edits日志中的信息合并到fsimage文件中第四阶段:进入安全模式,检查数据块的完整性HDFS的安全模式什么是安全模式安全
- 集群hdfs启动
sxu~源
hdfshadoopbigdata
1)各个模块分开启动/停止(配置ssh是前提)常用(1)整体启动/停止HDFSstart-dfs.sh/stop-dfs.sh(2)整体启动/停止YARNstart-yarn.sh/stop-yarn.sh2)各个服务组件逐一启动/停止(1)分别启动/停止HDFS组件hdfs--daemonstart/stopnamenode/datanode/secondarynamenode(2)启动/停止Y
- spark常用命令
我是浣熊的微笑
spark
查看报错日志:yarnlogsapplicationIDspark2-submit--masteryarn--classcom.hik.ReadHdfstest-1.0-SNAPSHOT.jar进入$SPARK_HOME目录,输入bin/spark-submit--help可以得到该命令的使用帮助。hadoop@wyy:/app/hadoop/spark100$bin/spark-submit--
- 编程常用命令总结
Yellow0523
LinuxBigData大数据
编程命令大全1.软件环境变量的配置JavaScalaSparkHadoopHive2.大数据软件常用命令Spark基本命令Spark-SQL命令Hive命令HDFS命令YARN命令Zookeeper命令kafka命令Hibench命令MySQL命令3.Linux常用命令Git命令conda命令pip命令查看Linux系统的详细信息查看Linux系统架构(X86还是ARM,两种方法都可)端口号命令L
- Hadoop常见面试题整理及解答
叶青舟
Linuxhdfs大数据hadooplinux
Hadoop常见面试题整理及解答一、基础知识篇:1.把数据仓库从传统关系型数据库转到hadoop有什么优势?答:(1)关系型数据库成本高,且存储空间有限。而Hadoop使用较为廉价的机器存储数据,且Hadoop可以将大量机器构建成一个集群,并在集群中使用HDFS文件系统统一管理数据,极大的提高了数据的存储及处理能力。(2)关系型数据库仅支持标准结构化数据格式,Hadoop不仅支持标准结构化数据格式
- hive表格统计信息不准确
weixin_41956627
hivehivehadoop数据仓库
问题描述有个hive分区表,orc存储格式,有个分区,查询selectcount(1)fromtablewheredt='yyyyMMdd'结果是0,但查询select*fromtablewheredt='yyyyMMdd'又能查到数据,去hdfs对应目录下查看,也能看到有数据文件解决执行如下sqlANALYZETABLEdb.table1PARTITION(dt='20240908')COMPU
- 人生苦短我用Python pandas文件格式转换
程序喵D
人生苦短我用Pythonpythonpandas
人生苦短我用Pythonpandas文件格式转换前言示例1excel与csv互转常用格式的方法FlatfileExcelJSONXML示例2常用格式转换简要需求依赖export方法main方法附其它格式的方法HTMLPicklingClipboardLatexHDFStore:PyTables(HDF5)FeatherParquetORCSASSPSSSQLGoogleBigQuerySTATA前
- 深入解析HDFS:定义、架构、原理、应用场景及常用命令
CloudJourney
hdfs架构hadoop
引言Hadoop分布式文件系统(HDFS,HadoopDistributedFileSystem)是Hadoop框架的核心组件之一,它提供了高可靠性、高可用性和高吞吐量的大规模数据存储和管理能力。本文将从HDFS的定义、架构、工作原理、应用场景以及常用命令等多个方面进行详细探讨,帮助读者全面深入地了解HDFS。1.HDFS的定义1.1什么是HDFSHDFS是Hadoop生态系统中的一个分布式文件系
- 解决flume在抽取不断产生的日志文件时,hdfs上出现很多小文件的问题
lzhlizihang
flumehdfs大数据
问题在使用flume时,需要编写conf文件,然后执行,明明sinks已经指定了roll的三个参数:a1.sinks.k1.hdfs.rollInterval=0(根据写入时间来切割)a1.sinks.k1.hdfs.rollSize=0(根据写入的文件大小来切割)a1.sinks.k1.hdfs.rollCount=0(根据Event数量来切割)其中0代表不根据其属性来切割文件但是hdfs上还会
- Hadoop的搭建流程
lzhlizihang
hadoop大数据分布式
文章目录一、配置IP二、配置主机名三、配置主机映射四、关闭防火墙五、配置免密六、安装jdk1、第一步:2、第二步:3、第三步:4、第四步:5、第五步:七、安装hadoop1、上传2、解压3、重命名4、开始配置环境变量5、刷新配置文件6、验证hadoop命令是否可以识别八、全分布搭建7、修改配置文件core-site.xml8、修改配置文件hdfs-site.xml9、修改配置文件hadoop-en
- hive搭建 -----内嵌模式和本地模式
lzhlizihang
hivehadoop
文章目录一、内嵌模式(使用较少)1、上传、解压、重命名2、配置环境变量3、配置conf下的hive-env.sh4、修改conf下的hive-site.xml5、启动hadoop集群6、给hdfs创建文件夹7、修改hive-site.xml中的非法字符8、初始化元数据9、测试是否成功10、内嵌模式的缺点二、本地模式(最常用)1、检查mysql是否正常2、上传、解压、重命名3、配置环境变量4、修改c
- 详解 JuiceFS sync 新功能,选择性同步增强与多场景性能优化
Juicedata
性能优化
JuiceFSsync是一个强大的数据同步工具,支持在多种存储系统之间进行并发同步或迁移数据,包括对象存储、JuiceFS、NFS、HDFS、本地文件系统等。此外,该工具还提供了增量同步、模式匹配(类似Rsync)、分布式同步等高级功能。在最新的v1.2版本中,针对Juicesync我们引入了多项新功能,并对多个场景进行了性能优化,以提高用户在处理大目录和复杂迁移时的数据同步效率。新增功能增强选择
- Hadoop HDFS中的NameNode、SecondaryNameNode和DataNode
BigDataMLApplication
大数据hadoophadoophdfs大数据
HadoopHDFS中的NameNode、SecondaryNameNode和DataNode目录1.定义2.主要作用3.官方链接1.定义在HadoopHDFS(Hadoop分布式文件系统)中,有三个关键的组件:NameNode、SecondaryNameNode和DataNode。NameNodeNameNode是HDFS的主要组件之一,负责管理文件系统的命名空间、存储文件的元数据信息以及处理客
- 【Hadoop|HDFS篇】NameNode和SecondaryNameNode
Vez'nan的幸福生活
hadoophdfs大数据
1.NN和2NN的工作机制思考:NameNode中的元数据是存储在哪里的?首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中。但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此产生在磁盘中备份元数据的Fslmage。这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsIm
- Hbase的简单使用示例
傲雪凌霜,松柏长青
后端大数据hbase数据库大数据
HBase是基于HadoopHDFS构建的分布式、列式存储的NoSQL数据库,适用于存储和检索超大规模的非结构化数据。它支持随机读写,并且能够处理PB级数据。HBase通常用于实时数据存取场景,与Hadoop生态紧密集成。使用HBase的Java示例前置条件HBase集群:确保HBase集群已经安装并启动。如果没有,你可以通过本地伪分布模式或Docker来运行HBase。Hadoop配置:HBas
- HBase
傲雪凌霜,松柏长青
大数据后端hbase数据库大数据
ApacheHBase是一个基于Hadoop分布式文件系统(HDFS)构建的分布式、面向列的NoSQL数据库,主要用于处理大规模、稀疏的表结构数据。HBase的设计灵感来自Google的Bigtable,能够在海量数据中提供快速的随机读写操作,适合需要低延迟和高吞吐量的应用场景。HBase核心概念表(Table):HBase的数据存储在表中,与传统的关系型数据库不同,HBase的表是面向列族(Co
- Hive的优势与使用场景
傲雪凌霜,松柏长青
后端大数据hivehadoop数据仓库
Hive的优势Hive作为一个构建在Hadoop上的数据仓库工具,具有许多优势,特别是在处理大规模数据分析任务时。以下是Hive的主要优势:1.与Hadoop生态系统的紧密集成Hive构建在Hadoop分布式文件系统(HDFS)之上,能够处理海量数据并进行分布式计算。它利用Hadoop的MapReduce或Spark来执行查询,具备高度扩展性,适合大数据处理。2.支持SQL-like查询语言(Hi
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/