赫夫曼编码压缩实例

昨天只完成了赫夫曼编码表的生成实现,今天补了一些没有学过的知识,举出了一个压缩的实例,并将赫夫曼编码的方法封装。

import java.util.*;

public class HuffmanCode {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		String str = "i love love a a man man and and monocle monocle";
		System.out.println("原来的字符串为" + str);
		byte[] strBytes = str.getBytes();
		System.out.println("原来字符串长度为" + strBytes.length);
		byte[] huffmanCodesBytes = huffmanZip(strBytes);
		System.out.println("压缩后的结果为" + Arrays.toString(huffmanCodesBytes));
		System.out.println("压缩后的长度为" + huffmanCodesBytes.length);
		/*
		 * List nodes = getNode(strBytes); System.out.println("nodes=" + nodes);
		 * 
		 * // 测试一把创建的二叉树 System.out.println("赫夫曼树"); Node huffmanTreeRoot =
		 * createHuffmanTree(nodes); System.out.println("前序遍历");
		 * huffmanTreeRoot.preOrder();
		 * 
		 * // 测试是否生成了对应的赫夫曼编码 Map huffmanCodes =
		 * getCodes(huffmanTreeRoot); System.out.println("生成的赫夫曼编码表" + huffmanCodes);
		 * 
		 * //测试最后结果 byte[] huffmanCodeBytes=zip(strBytes,huffmanCodes);
		 * System.out.println("huffmanCodeBytes="+Arrays.toString(huffmanCodeBytes));
		 */

	}

	// 使用一个方法,将前面的方法封装起来
	private static byte[] huffmanZip(byte[] bytes) {
		List<Node> nodes = getNode(bytes);
		// 根据nodes创建赫夫曼树
		Node huffmanTreeRoot = createHuffmanTree(nodes);
		// 对应的赫夫曼编码(根据赫夫曼树)
		Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
		// 根据生成的赫夫曼编码压缩得到压缩后的赫夫曼编码字节数组
		byte[] huffmanCodeBytes = zip(bytes, huffmanCodes);
		return huffmanCodeBytes;
	}

	// 编写一个方法,将字符串对应的byte【】数组通过生成的赫夫曼编码表,返回一个赫夫曼编码压缩后的byte【】
	private static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) {
		// 1、利用huffmanCodes将bytes转成赫夫曼编码对应的字符串
		StringBuilder stringBuilder = new StringBuilder();
		// 遍历bytes
		for (byte b : bytes) {
			stringBuilder.append(huffmanCodes.get(b));
		}
		// 将字符串转为byte【】,注意源码,反码,补码的问题
		int len;
		if (stringBuilder.length() % 8 == 0) {
			len = stringBuilder.length() / 8;
		} else {
			len = stringBuilder.length() / 8 + 1;
		}
		// 创建存储压缩后的byte数组
		byte[] huffmanCodeBytes = new byte[len];
		int index = 0;
		for (int i = 0; i < stringBuilder.length(); i += 8) {
			String strByte;
			if (i + 8 > stringBuilder.length()) {// 不够八位
				strByte = stringBuilder.substring(i);
			} else {
				strByte = stringBuilder.substring(i, i + 8);
			}
			// 将strByte转成一个byte,放入到huffmanCodeBytes
			huffmanCodeBytes[index] = (byte) Integer.parseInt(strByte, 2);
			index++;
		}
		return huffmanCodeBytes;
	}

	// 生成赫夫曼编码表
	static Map<Byte, String> huffmanCodes = new HashMap<Byte, String>();
	static StringBuilder stringBuilder = new StringBuilder();

	// 将传入的node结点的所有叶子结点的赫夫曼编码得到,并放入到huffmanCodes集合
	// StringBuilder用于拼接路径
	// 路径:左子结点是0,右是1
	public static void getCodes(Node node, String code, StringBuilder stringBuilder) {
		StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
		stringBuilder2.append(code);
		if (node != null) {// node==null不处理
			// 判断当前node是不是叶子结点
			if (node.data == null) {
				getCodes(node.left, "0", stringBuilder2);
				getCodes(node.right, "1", stringBuilder2);
			} else {
				// 找到叶子结点
				huffmanCodes.put(node.data, stringBuilder2.toString());
			}

		}
	}

	// 为了调用方便,重载getCodes
	private static Map<Byte, String> getCodes(Node root) {
		if (root == null) {
			return null;
		}
		getCodes(root.left, "0", stringBuilder);
		getCodes(root.right, "1", stringBuilder);
		return huffmanCodes;
	}

	// 前序遍历的方法
	private static void preOrder(Node root) {
		if (root != null) {
			root.preOrder();
		} else {
			System.out.println("赫夫曼树为空");
		}
	}

	// bytes接收字节数组
	// 返回的就是List形式
	private static List<Node> getNode(byte[] bytes) {
		// 创建一个ArrayList
		ArrayList<Node> nodes = new ArrayList<Node>();
		// 遍历bytes,统计每一个byte出现的次数
		Map<Byte, Integer> counts = new HashMap<>();
		for (byte b : bytes) {
			Integer count = counts.get(b);
			if (count == null) {// Map还没有这个字符数据,第一次
				counts.put(b, 1);
			} else {
				counts.put(b, count + 1);
			}
		}
		// 把每一个键值对转成Node对象并加入到nodes集合
		// 遍历map
		for (Map.Entry<Byte, Integer> entry : counts.entrySet()) {
			nodes.add(new Node(entry.getKey(), entry.getValue()));
		}
		return nodes;
	}

	private static Node createHuffmanTree(List<Node> nodes) {
		while (nodes.size() > 1) {
			// 排序,从小到大
			Collections.sort(nodes);
			Node leftNode = nodes.get(0);
			Node rightNode = nodes.get(1);
			// 创建一棵新的二叉树,它的根节点没有data,只有权值
			Node parent = new Node(null, leftNode.weight + rightNode.weight);
			parent.left = leftNode;
			parent.right = rightNode;
			// 将已经处理的两棵二叉树从nodes删除
			nodes.remove(leftNode);
			nodes.remove(rightNode);
			// 将新的二叉树加入
			nodes.add(parent);
		}
		return nodes.get(0);
	}
}

//创建Node,存放数据和权值
class Node implements Comparable<Node> {
	Byte data;// 存放数据(字符),比如'a'→97
	int weight;// 权值,表示字符出现的次数
	Node left;
	Node right;

	public Node(Byte data, int weight) {
		super();
		this.data = data;
		this.weight = weight;
	}

	public int compareTo(Node o) {
		// 从小到大排序
		return this.weight - o.weight;
	}

	@Override
	public String toString() {
		return "Node [data=" + data + ", weight=" + weight + "]";
	}

	public Byte getData() {
		return data;
	}

	public void setData(Byte data) {
		this.data = data;
	}

	public int getWeight() {
		return weight;
	}

	public void setWeight(int weight) {
		this.weight = weight;
	}

	public Node getLeft() {
		return left;
	}

	public void setLeft(Node left) {
		this.left = left;
	}

	public Node getRight() {
		return right;
	}

	public void setRight(Node right) {
		this.right = right;
	}

	// 前序遍历
	public void preOrder() {
		System.out.println(this);
		if (this.left != null) {
			this.left.preOrder();
		}
		if (this.right != null) {
			this.right.preOrder();
		}
	}
}

运行结果如下:
在这里插入图片描述

你可能感兴趣的:(学习)