原题链接在这里:https://leetcode.com/problems/unique-paths/
题目:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
题解:
DP问题.需保存历史数据为走到当前格子的不同路径数,用二维数组dp保存。
更新当前点dp[i][j]为上一行同列dp[i-1][j]的值 + 本行上一列dp[i][j-1]的值,因为走到上一行同列的值想走到当前格都是往下走一步,左边同理。
初始化是第一行和第一列都是1.
答案是dp[m-1][n-1].
Time Complexity: O(m*n). Space: O(m*n).
AC Java:
1 public class Solution { 2 public int uniquePaths(int m, int n) { 3 if(m == 0 || n == 0){ 4 return 0; 5 } 6 int [][] dp = new int[m][n]; 7 for(int i = 0; i){ 8 dp[i][0] = 1; 9 } 10 for(int j = 0; j ){ 11 dp[0][j] = 1; 12 } 13 for(int i = 1; i ){ 14 for(int j = 1; j ){ 15 dp[i][j] = dp[i-1][j] + dp[i][j-1]; 16 } 17 } 18 return dp[m-1][n-1]; 19 } 20 }
存储历史信息可以用一维数组完成从而节省空间。生成一个长度为n的数组dp, 每次更新dp[j] += dp[j-1], dp[j-1]就是同行前一列的历史结果,dp[j]为更新前是同列上一行的结果,所以dp[j] += dp[j-1]就是更新后的结果。
Note:外层loop i 从0开始,dp[0] = 1, 相当于初始了第一列,所以i=0开始要初始第一行
Time Complexity: O(m*n). Space: O(n).
1 class Solution { 2 public int uniquePaths(int m, int n) { 3 if(m == 0 || n == 0){ 4 return 0; 5 } 6 7 int [] dp = new int[n]; 8 for(int j = 0; j){ 9 dp[j] = 1; 10 } 11 12 for(int i = 1; i ){ 13 for(int j = 1; j ){ 14 dp[j] = dp[j] + dp[j-1]; 15 } 16 } 17 18 return dp[n-1]; 19 } 20 }
有进阶版题目Unique Paths II.